MiniBooNE Enters Its Second Decade

E. D. Zimmerman University of Colorado/TRIUMF TRIUMF Workshop on Neutrinos and New Physics Vancouver, BC 14 November 2012

Short-Baseline Neutrino Physics at MiniBooNE

- MiniBooNE
- Neutrino cross-sections
 - Hadron production channels
 - Quasielastic scattering (if time)
- Oscillation physics
 - Antineutrino Oscillations
 - MiniBooNE-SciBooNE joint result (if time)

Motivating MiniBooNE: LSND Liquid Scintillator Neutrino Detector

- Stopped π^+ beam at Los Alamos LAMPF produces ν_e , ν_{μ} , $\overline{\nu}_{\mu}$ but no $\overline{\nu}_e$ (due to π^- capture). Search for $\overline{\nu}_e$ appearance via reaction: $\overline{\nu}_e + p \rightarrow e^+ + n$
- Look for delayed coincidence of positron and neutron capture.
- Major background non-beam (measured, subtracted)
- 3.8 standard dev. excess above background.
- Oscillation probability:

$$P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) = (2.5 \pm 0.6_{\text{stat}} \pm 0.4_{\text{syst}}) \times 10^{-3}$$

LSND oscillation signal

- LSND "allowed region" shown as band
- KARMEN2 is a similar experiment with a slightly smaller L/E; they see no evidence for oscillations. Excluded region is to right of curve.

MiniBooNE: E898 at Fermilab

- Purpose is to test LSND with:
 - Higher energy
 - Different beam
 - Different oscillation signature
 - Different systematic effects
- L=500 meters, E=0.5-1 GeV: same L/E as LSND.

Oscillation Signature at MiniBooNE

Oscillation signature is charged-current quasielastic scattering:

 $\nu_e + n \to e^- + p$

- Dominant backgrounds to oscillation:
 - Intrinsic ν_e in the beam $\pi \to \mu \to \nu_e$ in beam $K^+ \to \pi^0 e^+ \nu_e, \ K_L^0 \to \pi^0 e^{\pm} \nu_e$ in beam
 - Particle misidentification in detector

Neutral current resonance: $\Delta \to \pi^0 \to \gamma \gamma \text{ or } \Delta \to n\gamma, \text{ mis-ID as } e$

MiniBooNE Beamline

- 8 GeV primary protons come from Booster accelerator at Fermilab
- Booster provides about 5 pulses per second, 5×10^{12} protons per 1.6 μ s pulse under optimum conditions
- Beryllium target, single 174 kA horn
- 50 m decay pipe, 91 cm radius, filled with stagnant air

MiniBooNE neutrino detector

Pure mineral oil
800 tons; 40 ft diameter
Inner volume: 1280 8" PMTs
Outer veto volume: 240 PMTs

MiniBooNE's track-based reconstruction

- A detailed analytic model of extended-track light production and propagation in the tank predicts the probability distribution for charge and time on each PMT for individual muon or electron/photon tracks.
- Prediction based on seven track parameters: vertex (x,y,z), time, energy, and direction $(\theta, \varphi) \Leftrightarrow (U_x, U_y, U_z)$.
- Fitting routine varies parameters to determine 7-vector that best predicts the actual hits in a data event
- Particle identification comes from ratios of likelihoods from fits to different parent particle hypotheses

Beam/Detector Operation

- Fall 2002 Jan 2006: Neutrino mode (first oscillation analysis).
- Jan 2006 2012: Antineutrino mode
 - (Interrupted by short Fall 2007 April 2008 neutrino running for SciBooNE)
- Present analyses use:
 - \geq 5.7E20 protons on target for neutrino analyses
 - 11.3E20 protons on target for antineutrino analyses
 - Over one million neutrino interactions recorded: by far the largest data set in this energy range

Neutrino scattering crosssections

- To understand the flavor physics of neutrinos (*i.e.* oscillations), it is critical to understand the physics of neutrino interactions
- This is a real challenge for most neutrino experiments:
 - Broadband beams
 - Large backgrounds to most interaction channels
 - Nuclear effects (which complicate even the definition of the scattering processes!)

Scattering cross-sections for v_{μ}

The state of knowledge of v_{μ} interactions before the current generation of experiments:

- Lowest energy (E < 500 MeV) is dominated by CCQE.
- High energies (E > 5 GeV) are completely dominated by deep inelastic scattering (DIS).
- Most data over 20 years old, and on light targets (deuterium).
- Current and future experiments use nuclear targets; almost no data available.

Dominant interaction channels at MiniBooNE

 π^{0} production

Charged-currer quasielastic MiniBooNE has measured crosssections for all of these exclusive channels, which add up to \sim 90% of the total event rate

n,p

Neutral-current π^0 production

+ coherent

Z

Neutral-current elastic

n,p

W

13

 π^0

n,p

MiniBooNE cross-section measurements

• CC π^0

Due to limited time, only discussing a few topics here.

- CC π^+
- CC Quasielastic
- NC Etastic
- CC Inclusive (new!)

Measured observable $CC\pi^0$ cross-section

- The dominant error is π^+ charge exchange and absorption in the detector.
- First-ever differential cross-sections on a nuclear target.
- The cross-section is larger than expectation for all energies.
- Phys.Rev.D83:052009,2011

Measured observable chargedcurrent π^+ cross-sections

- Differential cross sections (flux averaged):
 - $d\sigma/dQ^2$, $d\sigma/dE_{\mu}$, $d\sigma/d\cos\theta_{\mu}$, $d\sigma/d(E_{\pi})$, $d\sigma/d\cos\theta_{\pi}$:

200

400

600

800

Frror Bands

1000

1400

 Q^{2} (MeV²/c⁴)

1200

Charged-current quasielastic scattering (CCQE)

• Lepton vertex well understood

- Nucleon vertex parametrized with 2 vector form factors
 *F*_{1,2} and one axial vector form factor *F*_A
- Use relativistic Fermi gas model of nucleus; *F*_{1,2} come from electron scattering measurements
- Generally assume dipole form of F_A ; only parameter is axial mass m_A extracted from neutrino-deuterium scattering experiments: 2002 average $M_A = 1.026 \pm 0.021 \text{ GeV}$ $F_A(Q^2) = -\frac{g_A}{\left(1 + \frac{Q^2}{M_A^2}\right)}$

CCQE fit results: Q² dependence

- Data are compared (absolutely) with CCQE (RFG) model with various parameter values
- We prefer larger *m*_A compared to D₂ data
- Our CCQE cross-section is 30% above the worldaveraged CCQE model (red).
- Model with CCQE parameters extracted from shape-only fit agrees well with overall event rate (to within normalization error).

Comparisons to other experiments (carbon targets)

- Our data (and SciBooNE) appear to prefer higher *M_A* than NOMAD, but the disagreement is not very significant.
- Note that:
 - Our errors are systematic-dominated and grow at highest energies
 - NOMAD allowed maximum of two tracks in event: in principle, different processes may contribute to the two experiments' samples
- Possible explanation for what appears to be higher *M_A*: two-nucleon correlations: Martini *et al.*, PRC 80, 065501 (2009) and (new) Martini, Ericson, Chanfray 1121.1523

$\begin{array}{c} CCQE:v_{\mu}-v_{\mu}\\ \text{antineutrino CCQE} \end{array}$

• J. Grange, NuInt 2012 talk

Charged-current inclusive

Can't we just add CCQE, $CC\pi^+$ and $CC\pi^0$?

- Yes, we can add the cross sections, but we'll be adding the systematics as well.
- Complicated model-dependent correlations: each of the exclusive channels is a background for the others (both experimentally and through FSI model).
- We report observable pion production, but nucleonlevel CCQE. So adding the cross-sections doesn't include all events properly.

CC Inclusive event selection

- Events are tagged by at least one Michel electron,
- Veto and Containment Maximum of five veto hits in all subevents,
- Minimum PMT hits in the first subevent to remove beam unrelated backgrounds.
- Fiducial Volume Reconstructed vertex within 5m radius.
- Event rates at the generator level:
 - CCQE: 52%; CCπ⁺: 34%;
 - CCπ⁰: 5%; Other CC: 3%;
 - NC: 3%; antineutrino: 1%.
- FSI changes the fractions of different event topologies. Data events after cuts 344k. 96% purity.

MiniBooNE as a calorimeter

- Need a measure of the total energy in an event, not just muon momentum
- Get muon kinematics from 2-track likelihood fit: allowing second ring reduces bias in events where there is a second (or more) charged track.
- Small scintillation component of natural mineral oil yields "late" light in event. Use total late light as a measure of neutrino energy.
- Fully reconstructs lepton vertex: no assumptions about target mass

MiniBooNE MC

Neutrino Energy Reconstruction Performance

Neutrino energy reconstruction is obtained from the late light charge which is linearly correlated with the true neutrino energy.

The parameters of the reconstruction come from a linear fit to both CCQE and $CC\pi^+$ enhanced samples. the slope parameter is the same in both cases while the Intercept is different.

MiniBooNE CC inclusive total cross-section vs. energy

CC inclusive cross-sections in muon kinematics

- Top plot shows the flux integrated double differential cross section in muon kinematics $d^2\sigma/dT_{\mu}d\cos\theta_{\mu}$.
- Double-differential cross-section
- Bottom plot shows the ratio with the model (NUANCE).
- Model: Fermi gas model (Smith-Moniz) with $M_A^{QE} = 1.23$ GeV, $\kappa = 1.019$, Rein-Seghal M_A^{res} .
- Working on this cross-section as function of neutrino energy

Neutrino Oscillations: 2007 result

- Search for v_e appearance in the detector using quasielastic scattering candidates
- Sensitivity to LSND-type oscillations is strongest in 475 MeV < E < 1250 MeV range
- Data consistent with background in oscillation fit range
- Significant excess at lower energies: source unknown, consistent experimentally with either v_e or single photon production

Oscillation search: *Phys.Rev.Lett*.**98**:231801 (2007) Low-E excess: *Phys.Rev.Lett*.**102**:101802 (2009)

Oscillation Fit Method

- Simultaneous maximum likelihood fit to
 - \overline{v}_{e} CCQE sample
 - High-statistics \overline{v}_{μ} CCQE sample
- \overline{v}_{μ} CCQE sample constrains many of the uncertainties:

- Cross section uncertainties (assume lepton universality)
- Background modes -- estimate before constraint from $\overline{\nu}_{\mu}$ data (constraint changes background by about 1%)
- Systematic error on background $\approx 10\%$ (energy dependent)

Antineutrino Oscillations

- LSND was primarily an antineutrino oscillation search; need to verify with antineutrinos as well due to potential CPviolating explanations
- Antineutrino oscillation search suffers from lower statistics than in neutrino mode due to lower production and interaction cross-sections
- Also, considerable neutrino contamination (22±5)% in antineutrino event sample (e-print 1102.1964 [hep-ex])
- However, now have twice the protons on target compared to neutrino mode

Data in antineutrino oscillation search: 2010 result with 5.66E20 POT

- 475 MeV < E < 1250 MeV:
 - 99.1±9.8(syst) expected after fit constraints
 - 120 observed; excess
 20.9±13.9 (total)
 - Raw "one-bin" counting excess significance is 1.5σ
- Also saw small excess at low energy, consistent with neutrino mode excess if attributed to neutrino contamination in v beam

Electron antineutrino appearance oscillation result from 2010

- Results for **5.66E20 POT**
- Maximum likelihood fit for *simple two-neutrino model*
- Oscillation hypothesis preferred to background-only at 99.4% confidence level.
- E>475 avoids question of lowenergy excess in neutrino mode.
- Signal bins only:
 - $P_{\chi 2}(null) = 0.5\%$
 - $P_{\chi 2}$ (best fit)= ~10%
- •Phys. Rev. Lett. 105, 181801 (2010)

Updated antineutrino data: full 11.3E20 POT

- Analysis is very nearly unchanged; double the statistics
- Most significant changes:
 - New constraint on neutrino flux from K⁺ decays from SciBooNE result (e-print 1105.2871 [hep-ex]). Reduces this component of background by 3%; error by factor of 3
 - In-situ measurement of neutrino contamination in antineutrino beam: Phys.Rev.D81 072005 (2011).
- Other systematic errors, constrained by MiniBooNE data, shrink fractionally due to higher statistics in control samples:
 - Pion-decay neutrino normalization factors
 - Dirt neutrino background
 - Neutral-current π^0 production

Updated antineutrino data: 11.3E20 POT

- 475 MeV < E < 1250 MeV
 - 200.8 ± 17.9 (syst) expected after fit constraints
 - 221 observed; excess 20.1 ± 22.8 (total)
 - Raw "one-bin" counting excess significance 0.88σ
- Excess in oscillation-sensitive region is reduced somewhat with new data; low-energy excess is more significant and resembles neutrino-mode data

475-1250 MeV

Updated electron antineutrino appearance oscillation results

- Results for 11.3E20 POT
- Maximum likelihood fit for *simple two-neutrino model*
- Oscillation hypothesis preferred to background-only at 91.4% confidence level.
- E>475 bins only:
 - $P_{\chi 2}(null) = 24.6\%$
 - P_{x2}(best fit)= 49.2%
- Still consistent with LSND, though evidence for LSND-like oscillations no longer as strong

The full energy range

- Low-energy excess is now more prominent; excess above background in 200<E<475 MeV is 58.1±21.6 events.
- Full E<1250 range: excess is 78.2±30.8

Oscillation fits: full energy range

- Results for 11.3E20 POT
- Maximum likelihood fit for *simple two-neutrino model*
- Oscillation hypothesis preferred to background-only at 99.5% confidence level.
- Fit over all bins:
 - $P_{\chi 2}(null) = 5.4\%$
 - P_{x2}(best fit)= 67.1%

Low-energy excess: how does it scale?

- Excess above background in 200<E<475 MeV is 58.1±21.6 events. Scaling from what is observed in neutrino mode, can test various hypotheses.
- Expect if it scales with...
 - Total background: 63
 - Neutrino contamination only: 21
 - $\Delta \rightarrow N\gamma$ decays: 50
 - Dirt: <u>59</u>

- Protons on target (neutrals in secondary beam): 210
- *K*⁺ in secondary beam: 84
- NC π⁰: 61
- Inclusive CC: 75

Another way to fit: subtract low-E excess expected from neutrinos

- In principle, we are trying to fit for ν
 oscillations only, with expected contributions
 from ν subtracted as background
- However, neutrino contribution to low-energy excess isn't in background simulation since its explanation is unknown
- We can assume it scales with total neutrinoinduced event rate in each bin, and subtract it out when fitting for antineutrino oscillations.
- Oscillation hypothesis preferred to backgroundonly at 96.2% confidence level.
- Fit over all bins: P_{X2}(null)=15.6%; P_{X2}(best fit)=54.3%

Going back to full neutrino data, fits including low-energy region

v mode	E > 200 MeV	E > 475 MeV
χ²(null)	22.81	6.35
Prob(null)	0.5%	36.6%
χ²(bf)	13.24 ┥	→ 3.73
Prob(bf)	6.12%	42.0%

- Excess in 200-475: 124.8 ± 41.1
- Excess in 475-1250: 21.5 ± 34.9
- Some tension in fits between low- and highenergy regions

Further Neutrino/Antineutrino Running: Worthwhile?

- The Booster Neutrino Beam will be used again for MicroBooNE and possibly other projects. Is it worth taking more MiniBooNE data with the current detector to increase statistics?
 - Neutrino mode: probably not. We are reaching systematic limits.
 - Antineutrino mode: possibly. We are still statistics limited, but many years would be required to double the data set.
- There are possible new configurations that would address some systematic issues.

Future Possibilities for MiniBooNE

- MircoBooNE starts running on the BNB in early 2014 in neutrino mode.
- FNAL accelerator shutdown ends early 2013.
- ~ 1 year opportunity for MB to run in whatever mode we dictate (WIMP search in beam off target mode). Proposal submitted to 2012 PAC.
- When MicroBooNE runs in neutrino mode, MB can run concurrently.
- Studying possibility of adding scintillator to separate backgrounds from oscillation signal. LOI submitted to 2012 PAC.

World Data on Low-Mass Spin-Independent WIMP Scattering

- Traditional underground direct detection experiments run out of sensitivity below ~1 GeV. It turns out MB can probe this region. See PAC proposal for theory and experiment details:
- http://www.fnal.gov/ directorate/ program_planning/ Oct2012Public/ P-1032_MiniBooNE_proposal_ 2012.pdf

WIMP search with off-target beam

- Idea: let primary beam bypass target and horn, and strike steel beam absorber directly
- π^0 and η produced by protons in the iron quickly decay and then couple to WIMPs
- Charged mesons are absorbed in the iron before decaying, which significantly reduces the neutrino flux (backgrounds to WIMP search) by a factor of 42.
- WIMPs scatter off nucleons or electrons (to first order looks like neutrino elastic scattering).

MiniBooNE WIMP Sensitivities

- WIMPs scatter off nucleons or electrons (to first order looks like neutrino elastic scattering).
- Number of WIMP events detected in MiniBooNE:
 - Dark Green: >1000
 - Green: 10-1000
 - Light Green: 1-10 \rightarrow After all cuts, can achieve close to this region
- Light blue band is muon g-2 signal in Vector portal WIMP model.
- Solid black line is where WIMP relic density matches observation

MiniBooNE Scintillator Option

- Test NC backgrounds: Add scintillator to enable detection of 2.2 MeV n-capture photons for an enhanced $\nu_{\mu} \rightarrow \nu_{e}$ search at low energy.
 - CC oscillation signal events have very few neutrons: 1% (at 200MeV) → 10% (1 GeV)
 - NC backgrounds have $\sim\!50\%$ neutrons
 - \bullet can measure these neutron fractions with $\nu\mu$ events
- Plan: add scintillator, redo oscillation search with 6E20POT and ncapture analysis
- Will reduce systematic erorrs on NC backgrounds

Conclusions

- Cross-sections:
 - MiniBooNE has most precise measurements of top five interaction modes on carbon; only differential and double-differential cross-sections in some modes
 - Some disagreements with most common nuclear models
- Oscillation searches
 - Significant ν_e and $\overline{\nu}_e$ excesses above background are in both neutrino mode and antineutrino mode in MiniBooNE
 - Newest data update: excess is mostly at low energy, as with neutrinos.
 - Antineutrino data are still consistent with LSND; significance of oscillation signal in high-energy range is reduced compared to 2010
 - Antineutrino results still statistics-limited; MiniBooNE may accumulate more data after shutdown, perhaps in different configuration.