TRIUMF - November 2012

Light dark matter and neutrino beams

Adam Ritz University of Victoria

MiniBooNE + B. Batell, P. deNiverville, D. McKeen, M. Pospelov & AR - 1211.2258 P. deNiverville, D. McKeen & AR - 1205.349 P. deNiverville, M. Pospelov & AR - 1107.4580

[XENON100 '12]

Impressive direct detection sensitivity to thermal relic (WIMP) dark matter in the halo with O(GeV - TeV) mass.

Neutrinos and Dark Matter

me maybe dark matter is more like the CvB...

- neutrinos are a (small) component of dark matter
- very abundant ~ O(100/cm³)
- very hard to see via direct detection, since KE~10⁻⁴ eV

■ BUT muon neutrinos were discovered by producing them in meson decays (large rate!), and observing the (weak) scattering of the relativistic beam

OBSERVATION OF HIGH-ENERGY NEUTRINO REACTIONS AND THE EXISTENCE OF TWO KINDS OF NEUTRINOS^{*}

G. Danby, J-M. Gaillard, K. Goulianos, L. M. Lederman, N. Mistry, M. Schwartz,[†] and J. Steinberger[†]

Columbia University, New York, New York and Brookhaven National Laboratory, Upton, New York (Received June 15, 1962)

Melectron - Mhadron

6

Light (thermal relic) DM

The Lee-Weinberg bound on the WIMP mass ~ few GeV applies if annihilation in the early universe is via SM forces.

⇒ viable thermal relic density for a sub-GeV WIMP requires new annihilation channels through light states, i.e. light DM as part of a hidden sector. [Boehm & Fayet '03]

Standard Model Hidden Sector Light mediators

Also motivated by anomalies of course - e.g. MeV-scale models motivated by an (earlier!) Y-ray line anomaly (at 511keV) [Boehm, Fayet, Hooper, Silk, ...]

Light (thermal relic) DM

The Lee-Weinberg bound on the WIMP mass ~ few GeV applies if annihilation in the early universe is via SM forces.

⇒ viable thermal relic density for a sub-GeV WIMP requires new annihilation channels through light states, i.e. light DM as part of a hidden sector. [Boehm & Fayet '03]

(particularly if $m_{mediator} > 2 m_{DM}$) Br(med \rightarrow DM) ~ 1

Parametrize the interactions of a *neutral* hidden sector via the EFT expansion

- To form low dimension (marginal or relevant) operators, only a limited new (light) dofs are allowed
 - 1. a new U(1) vector (V) kinetically mixed with hypercharge
 - 2. a scalar sector (e.g. singlet S) coupled to the Higgs
 - 3. a set of RH neutrino-like Majorana fermions (N)

 Parametrize the interactions of a neutral hidden sector via the EFT expansion

$$\mathcal{L} = \Lambda^4 \mathcal{O}_0 + \mu^2 \mathcal{O}_2 + c \mathcal{O}_4 + \frac{1}{\Lambda_5} \mathcal{O}_5 + \frac{1}{\Lambda_6^2} \mathcal{O}_6 + \cdots$$

- Vector portal (V): $\mathcal{O}_4 = -\frac{\kappa}{2} V^{\mu\nu} B_{\mu\nu}$ [Okun '82, Holdom '86] • Higgs portal (S): $\mathcal{O}_3 = ASH^{\dagger}H$ $\mathcal{O}_4 = \lambda_S S^2 H^{\dagger}H$ • Neutrino portal (N): $\mathcal{O}_4 = Y_N^{ij} \bar{L}_L^i H N^j$ • Axion portal (a): $\mathcal{O}_5 = \frac{a}{8\pi f_a} (\alpha_3 G \tilde{G} + C_\gamma \alpha F \tilde{F})$
 - (many more at dim \geq 5)

relevant or marginal

 Parametrize the interactions of a neutral hidden sector via the EFT expansion

$$\mathcal{L} = \Lambda^4 \mathcal{O}_0 + \mu^2 \mathcal{O}_2 + c \mathcal{O}_4 + \frac{1}{\Lambda_5} \mathcal{O}_5 + \frac{1}{\Lambda_6^2} \mathcal{O}_6 + \cdots$$

- Vector portal: •• V = superWIMP DM $\mathcal{O}_4 = -\frac{\kappa}{2} V^{\mu\nu} B_{\mu\nu}$
- Higgs portal: \blacksquare S = singlet scalar DM $~~\mathcal{O}_4 = \lambda_S S^2 H^\dagger H$
- Neutrino portal: N = sterile neutrino DM $\mathcal{O}_4 = Y_N^{ij} \bar{L}_L^i H N^j$

• Axion portal: a = axion DM $\mathcal{O}_5 = \frac{a}{8\pi f_a} (\alpha_3 G \tilde{G} + C_\gamma \alpha F \tilde{F})$

• (many more at dim \geq 5)

These interactions automatically lead to a number of light DM candidates...

 Parametrize the interactions of a neutral hidden sector via the EFT expansion

$$\mathcal{L} = \Lambda^4 \mathcal{O}_0 + \mu^2 \mathcal{O}_2 + c \mathcal{O}_4 + \frac{1}{\Lambda_5} \mathcal{O}_5 + \frac{1}{\Lambda_6^2} \mathcal{O}_6 + \cdots$$

• Vector portal:
• Higgs portal:
• Higgs portal:
• Neutrino portal:
• Axion portal:
• (many more at dim
$$\geq$$
 5)
 $\mathcal{O}_4 = -\frac{\kappa}{2} V^{\mu\nu} B_{\mu\nu}$ [Okun '82, Holdom '86]
 $\mathcal{O}_4 = A_S S^2 H^{\dagger} H$
 $\mathcal{O}_4 = Y_N^{ij} \overline{L}_L^i H N^j$
 $\mathcal{O}_5 = \frac{a}{8\pi f_a} (\alpha_3 G \tilde{G} + C_\gamma \alpha F \tilde{F})$

More generally, these "bilinear" portals mediate interactions with new (and simple) light dark matter scenarios

Constraints on sub-GeV thermal relic DM

Classes of sub-GeV (thermal relic) DM models

[Boehm et al '03; Fayet '04,'06; Pospelov, AR, Voloshin '07;...]

- U(1) mediator
 - fermionic DM: s-wave annihilation, so is constrained by CMB distortion to be a subdominant component of DM. [Padmanabhan & Finkbeiner et al '05; Slatyer et al '08]
 - scalar DM: p-wave annihilation, and is viable for sufficiently small mixing κ .
- Scalar mediator

- fermionic DM: p-wave annihilation, so can be viable with large mixing, but this leads to tension with limits from $B \rightarrow K + E_{miss}$. [Bird, Kowalewski & Pospelov '06]

- scalar DM: s-wave annihilation, and also needs large mixing, so constrained by CMB limits and rare B-decays.

Constraints on sub-GeV thermal relic DM

Classes of sub-GeV (thermal relic) DM models

[Boehm et al '03; Fayet '04,'06; Pospelov, AR, Voloshin '07;...]

- U(1) mediator
 - fermionic DM: s-wave annihilation, so is constrained by CMB distortion to be a subdominant component of DM. [Padmanabhan & Finkbeiner et al '05; Slatyer et al '08]

- scalar DM: p-wave annihilation, and is viable for sufficiently small mixing $\kappa.$

Scalar mediator

- fermionic DM: p-wave annihilation, so can be viable with large mixing, but this leads to tension with limits from $B \rightarrow K + E_{miss}$. [Bird, Kowalewski & Pospelov '06]

- scalar DM: s-wave annihilation, and also needs large mixing, so constrained by CMB limits and rare B-decays.

Vector portal model

- Allows viable sub-GeV thermal relic DM candidates [Boehm et al '03, Fayet '04,'06; Pospelov, AR, Voloshin '07; Hooper & Zurek '08]. [NB: Weak-scale candidates of interest due to enhanced low-v annihilation [Finkbeiner & Weiner, '07; Pospelov, AR, Voloshin '07; Arkani-Hamed et al '08; Pospelov, AR '08].]
- For $m_{DM} < m_V$, the correct relic density fixes a specific relation between { $\alpha', m_V, m_{DM}, \kappa$ } [Pospelov, AR & Voloshin '07] and we also require perturbativity of the U(1) coupling α' (e.g. $\alpha' \sim \alpha$).

(Some) Experimental Sensitivity

Astrophysics/Cosmology

• BBN - minimal for m > 1-2 MeV

[Serpico & Raffelt '04, Jedamzik & Pospelov '09]

- SN minimal even for MeV mass, due to thermalization in the core
- CMB (and galaxy) minimal, as annihilation is p-wave [Padmanabhan & Finkbeiner et al '05; Slatyer et al '08]

Particle Physics Sensitivity [when $m_V > 2m_X$]

[several pioneering early studies by Fayet: 1980-90]

- Correction to g-2 limited for higher mass [Fayet; Pospelov '08]
- Dark Force Searches, V→I⁺I⁻ limited as Br(V →DM)~1
 [Bjorken et al. '09; Batell et al '09; Reece & Wang '09; MAMI '11, APEX '11, BaBar'12, ...]

$$\Rightarrow \left(\frac{\alpha}{\alpha'}\right)\kappa^4 < 10^{-6}$$

- E_{miss} in rare decays
 - low mass (e.g. π, K) [E949,...]
 - higher mass (e.g. J/ψ, Υ(1S)) [BESII'08, BaBar'09, Fayet'09]

Parameter space

17

Parameter space

also some inferred limits at lower mass from LSND, CHARM, NOMAD, ...

[Batell et al. '09; Essig et al. '10; deNiverville et al. '11, '12]

Parameter space

Another dark force regime

[Intensity Frontier Worskhop, Hewett, Weerts et al '12]

Some limits removed due to short V-lifetime, others weakened by $Br(V\rightarrow 2I) \sim \alpha \kappa^2 / \alpha'$

Direct detection plane

(Some) Experimental Sensitivity

Astrophysics/Cosmology

• BBN - minimal for p-wave annihilation and m > 1 MeV

[Serpico & Raffelt '04, Jedamzik & Pospelov '09]

- SN minimal even for MeV mass, due to thermalization in the core
- CMB (and galaxy) minimal, as annihilation is p-wave [Padmanabhan & Finkbeiner et al '05;

Slatyer et al '08]

Particle Physics Sensitivity [when $m_V > 2m_X$]

[several pioneering early studies by Fayet: 1980-90]

- Correction to g-2 limited for higher mass [Fayet; Pospelov '08]
- Dark Force Searches, V→I⁺I⁻ limited as Br(V →DM)~1
 [Bjorken et al. '09; Batell et al '09; Reece & Wang '09; MAMI '11, APEX '11, BaBar'12, ...]

$$\Rightarrow \left(\frac{\alpha}{\alpha'}\right)\kappa^4 < 10^{-6}$$

- E_{miss} in rare decays
 - low mass (e.g. π, K) [E949,...]
 - higher mass (e.g. J/ψ, Y(1S)) [BESII'08, BaBar'09, Fayet'09]

• Fixed targets/neutrino detectors - this talk!

Fixed target probes - Neutrino Beams

Fixed target probes - Neutrino Beams

We can use the neutrino (near) detector as a dark matter detector, looking for recoil, but now from a relativistic beam.

Fixed target probes - Neutrino Beams

We can use the neutrino (near) detector as a dark matter detector, looking for recoil, but now from a relativistic beam. E.g.

T2K 30 GeV protons (™ ~5x10²¹ POT) 280m to on- and offaxis detectors

MINOS 120 GeV protons 10²¹ POT 1km to (~27ton) segmented detector

MiniBooNE 8.9 GeV protons 10²¹ POT 540m to (~650ton) mineral oil detector

DM production (meson decay)

NB: Neutrino energy spectrum has a lower peak T2K (2°) ~ 0.7 GeV MINOS ~ 3 GeV

DM production (parton level)

Signatures

Characteristic DM elastic scattering signatures

These processes mimic neutral current elastic scattering of neutrinos, and can lead to an observable excess.

Results - lower mass (MiniBooNE)

Results - lower mass (MiniBooNE)

Constraints on MeV DM: Existing neutral current analyses at LSND and MiniBooNE strongly constrain O(1 MeV) *thermal relic* DM

[deNiverville, Pospelov, AR '11] 30

Summary of existing limits

MiniBooNE sensitivity $(N\chi \rightarrow N\chi)$

MiniBooNE sensitivity ($e\chi \rightarrow e\chi$)

Better sensitivity at lower V masses, as momeuntum transfer doesn't saturate at low V mass

Neutrino backgrounds...

- Neutrino elastic scattering provides a large background, but several features allow S/B to be enhanced
 - Timing (3ns resolution at MiniBooNE, along with pulsed beams)
 - time delay (Y=10) = O(10ns)
 - Energy cuts
 - neutrino beam peaks at lower energy
 - different scattering kinematics

MiniBooNE proposal to FNAL PAC

Low Mass WIMP Searches with a Neutrino Experiment: A Proposal for Further MiniBooNE Running

Presented to the FNAL PAC Oct 15, 2012

The MiniBooNE Collaboration

R. Dharmapalan, S. Habib, C. Jiang, & I. Stancu University of Alabama, Tuscaloosa, AL 35487

R. A. Johnson & D.A. Wickremasinghe University of Cincinnati, Cincinnati, OH 45221

FAC presentation

Oct 15, 2012

F.G. Garcia, R. Ford, T. Kobilarcik, W. Marsh, C. D. Moore, D. Perevalov, & C. C. Polly *Fermi National Accelerator Laboratory, Batavia, IL 60510*

J. Grange & H. Ray University of Florida, Gainesville, FL 32611

R. Cooper & R. Tayloe Indiana University, Bloomington, IN 47405

G. T. Garvey, W. Huelsnitz, W. Ketchum, W. C. Louis, G. B. Mills, J. Mirabal, Z. Pavlović, & R. Van de Water, Los Alamos National Laboratory, Los Alamos, NM 87545

> B. P. Roe University of Michigan, Ann Arbor, MI 48109

A. A. Aguilar-Arevalo Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, D.F. México

> P. Nienaber Saint Mary's University of Minnesota, Winona, MN 55987

The Theory Collaboration

B. Batell University of Chicago, Chicago, IL, 60637

P. deNiverville, D. McKeen, M. Pospelov, & A. Ritz University of Victoria, Victoria, BC, V8P 5C2 Request: 2x10²⁰ POT in 2013/14 to run with beam off target

MiniBooNE beam dump

ν_{μ} flux ratios

 removal of decay volume for charged mesons reduces neutrino background by factor of ~40 (70) with 50m (25m) absorber

MiniBooNE beam dump - Nx scattering

- neutral current cross-sections measured to O(18%) [MiniBooNE '10]

estimated neutrino backgrounds and 90% CL upper limits

POT	Beam Configuration	25m Absorber	25m Absorber	50m Absorber	50m Absorber
$(\times 10^{20})$		ν -Background	90% U.L.	ν -Background	90% U.L.
10.1	$\bar{\nu}$ beam on target			60605	16294
6.5	ν beam on target			95531	22136
6.5	beam off target	1137	267	2275	531
4.0	beam off target	700	166	1400	328
2.0	beam off target	350	85	700	166
1.0	beam off target	175	44	350	85

MiniBooNE beam dump - ex scattering

neutrino background can
be significantly reduced
(98%) with a forward angle
cut

estimated neutrino backgrounds and 90% CL upper limits

POT	Beam Configuration	25m Absorber	25m Absorber	50m Absorber	50m Absorber
$(\times 10^{20})$		ν -Background	90% U.L.	ν -Background	90% U.L.
10.1	$\bar{\nu}$ beam on target			31	8.6
6.5	ν beam on target			41	10.3
6.5	beam off target	0.45	2.75	0.90	3.20
4.0	beam off target	0.30	2.60	0.60	2.90
2.0	beam off target	0.15	2.45	0.30	2.60
1.0	beam off target	0.08	2.38	0.15	2.45

MiniBooNE beam dump - timing

- Travel time from 25m absorber to detector is 1716ns at v=c.
- Absolute beam-detector event timing known to ~ 1.8ns
- For higher mass WIMPs, with v<c, a timing cut can be used to further reduce the neutrino background

Timing cut (nsec)	Background Reduction $(\%)$	WIMP Velocity β	WIMP Mass (MeV)
3.0	90	0.9984	85
4.6	99	0.9974	108
5.9	99.9	0.9967	122

MiniBooNE beam dump

Nucleon scattering sensitivity - estimated 90% CL limits for 2x10²⁰ POT

NB: For these parameters, able to cover the range in which V-loops can resolve the g-2 discrepancy

MiniBooNE beam dump

Electron scattering sensitivity - estimated 90% CL limits for 2x10²⁰ POT

NB: For these parameters, able to cover the range in which V-loops can resolve the g-2 discrepancy

MiniBooNE beam dump - signal significance

	10^{-34} 10^{-35} 10^{-35} z 10^{-36} z 10^{-37} 10^{-38} 0.01		0.1	10 ⁻³⁴ To ³⁶ 10 ⁻³⁶ 10 ⁻³⁷ 0.01	2		
	Scattering	Beam Mode	WIMP m	ass (MeV)/	Signal	Background	Probability
	Channel	$(2.0 \times 10^{20} \text{ POT})$	cross sec	(cm^2)		and Errors	
1	Nucleon	$25\mathrm{m}$	$10/4 \times 10^{-37}$		1859	$350{\pm}66$	$< 10^{-10}$
2	Nucleon	$25\mathrm{m}$	$30/3 \times 10^{-36}$		1453	$350{\pm}66$	$< 10^{-10}$
3	Nucleon	$25\mathrm{m}$	$50/8 \times 10^{-36}$		1326	$203 {\pm} 40$	$< 10^{-10}$
4	Nucleon	$25\mathrm{m}$	$100/3 \times 10^{-35}$		1186	9.2 ± 3.4	$< 10^{-10}$
1	Electron	$25\mathrm{m}$	$10/4 \times 10^{-37}$		13.2	0.15	$< 10^{-10}$
2	Electron	$25\mathrm{m}$	$30/3 \times 10^{-36}$		7.7	0.15	$\sim 10^{-9}$
3	Electron	$25\mathrm{m}$	$50/8 imes 10^{-36}$		4.8	0.09	$\sim 10^{-6}$
4	Electron	$25\mathrm{m}$	$100/3 \times 10^{-35}$		1.4	0.004	$\sim 10^{-3}$

Results - higher mass (T2K, MINOS)

[deNiverville, McKeen, AR '12]

T2K - INGRID on-axis detector (with 5x10²¹ POT)

Results - higher mass (T2K, MINOS)

[deNiverville, McKeen, AR '12]

Results - higher mass (T2K, MINOS)

[deNiverville, McKeen, AR '12]

Concluding Remarks

Light DM at the Luminosity frontier

- WIMP (i.e. thermal relic) DM in the MeV-GeV range is viable, but difficult to probe using conventional direct detection.
- Models coupled via the vector portal (and possibly others) can be tested using fixed-target neutrino facilities.
- Existing NC analyses from LSND and MiniBooNE rule out a class of MeV-scale models motivated by the galactic 511 keV line
- Higher mass sensitivity to σ_{scat} = 1-10pb for O(10³-10⁴) events,
 - reducible background with timing, E_{min} cuts, etc
 - MiniBooNE proposal for off-target (beam dump) run
 - could be extended to O(1GeV) at MINOS, T2K,... [related work by Spannowsky, Tait, Wallace]

Complementary (direct) probes of dark matter

Concluding Remarks

Light DM at the Luminosity frontier

- WIMP (i.e. thermal relic) DM in the MeV-GeV range is viable, but difficult to probe using conventional direct detection.
- Models coupled via the vector portal (and possibly others) can be tested using fixed-target neutrino facilities.
- Existing NC analyses from LSND and MiniBooNE rule out a class of MeV-scale models motivated by the galactic 511 keV line
- Higher mass sensitivity to σ_{scat} = 1-10pb for O(10³-10⁴) events,
 - reducible with timing, E_{min} cuts, etc
 - MiniBooNE proposal for off-target (beam dump) run
 - could be extended to O(1GeV) at MINOS, T2K,... [related work by Spannowsky, Tait, Wallace]

Alternative (complementary) probes of light DM

- Direct detection via electron scattering (complementary, as more sensitive in the light mediator regime, e.g. with m_V < m_X). [Essig & Volansky '11; Graham et al '12; Essig et al '12 (Xenon10 data)]
- Collider searches (1-jet, 1-photon, but limited for light mediators). [Goodman et al '10; Fox et al '11; Shoemaker & Vecchi '11] + lepton jets etc.
- Rare decays (e.g. $\Phi \rightarrow E_{miss}$, Kaons)

Extra slides

Constraints on MeV-scale DM

Background at LSND is ~300 Elastic Scattering events [LSND '01]

Constraints on MeV-scale DM

[MiniBooNE '10]