
A Family Symmetry that Yields the Measured
Reactor Angle

C.S. Lam (Harry)

McGill University and
the U. of British Columbia

Canada

November 2012, TRIUMF

Lam A Family Symmetry that Yields the Measured Reactor Angle



CONTENTS

I. Introduction and Results

II. Symmetry and Mixing

III. ∆(150)

Lam A Family Symmetry that Yields the Measured Reactor Angle



I

Introduction



Is there a finite family symmetry

consistent with the neutrino mixing data?



electroweak

family

Particles [SU(2),U(1)Y ] → U(1)Q

G = Family

→ [Zn,Z2] Residual

Symmetry

Symmetry

νa := (νe , νµ, ντ ) [2,−1] Q

λ G (G2 = 1)

Na := (Ne ,Nµ,Nτ ) [1, 0] Q

ρ G

.

ea := (eL, µL, τL) [2,−1] Q

λ F (F n = 1)

Ea := (eR , µR , τR) [1,−2] Q

ε F

.

G assumed to be a finite subgroup of SU(3)

λ, ε, ρ: irreducible representations of G

F ,G ∈ G generates Zn,Z2 ⊂ G respectively

assume F †F = 1 = G †G

F 6= G , or else there would be no neutrino mixing

{G,F ,G} ↔ PMNS mixing matrix U (see Part II)
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Parametrization of U

reactor solar atmospheric
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Results 1

Before T2K

After T2K

θ12 = 34◦, θ13 = 0, θ23 = 45◦

U ' tri-bimaximal

{G,F ,G} = {S4,Z3,Z2}

F 3 = 1, G 2 = 1

θ12 = 34◦, θ13 = 9◦, θ23 < 45◦

after scanning through all the
nontrivial subgroups of SU(3) of
order <512 for G (59 of them)
(arXiv: 1208.5527 ) ⇒

without tunable parameters, only

{G,F ,G} = {∆(150), Z3,Z2}

works (see Part III) . It predicts
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Results 2

Group Theory (zero parameter prediction) Experiment (Kyoto Conf., June 2012)

sin2 2θ13 = 0.11

sin2 2θ23 = 0.94

Daya Bay:

sin2 2θ13 = 0.089± 0.010± 0.005

Double Chooz:

sin2 2θ13 = 0.109± 0.030± 0.025

RENO:

sin2 2θ13 = 0.113± 0.013± 0.019

T2K: (N)/(I, Prelim)

sin2 2θ13 = 0.104 + 0.060− 0.045

sin2 2θ13 = 0.128 + 0.070− 0.055

MINOS: (ν)/(ν)

sin2 2θ23 = 0.96± 0.04

sin2 2θ23 = 0.97± 0.03/0.08

(no restriction on θ12,mi , δ)
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Results 3

Dynamical Theory (tree order) Experiment (Kyoto Conf., June 2012)

(additional zero parameter predictions)

sin2 2θ12 = 0.90

δ = 0

m2 = 0

higher order correction is called for

PDG:

sin2 2θ12 = 0.95± 0.10± 0.01

δ =?

(∆m)2
23 = 2.32× 10−3eV2

(∆m)2
12 = 7.59× 10−5 eV2

∆(150) gives rise to a reasonable theory without any tunable parameter!
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II

Symmetry and Mixing

(Group Theory)



−L = E aM
e
abeb + NaM

ν
abνb + 1

2NaM
N
abNb + h.c. (Mab = Yab〈H〉)

effective LL mass matrix

residual family symmetry

M
e

:= Me†Me = M
e†

M
ν

:= MνT 1
MN M

ν = M
νT

(type-I seesaw)

Neutrino Mixing Matrix U

UTM
ν
U is diagonal

when M
e

is diagonal

U =

[
u1 u2 u3

↓ ↓ ↓

]

residual symmetry: L → L when

e → Fλe, E → FεE ,
ν → Gλν, N → GρN

Me = F †εM
eFλ

M
e

= F †λM
e
Fλ

Mν = G †ρM
νGλ, MN = GT

ρ M
NGρ

M
ν

= GT
λM

ν
Gλ

Gλ = uiu
†
i − uju

†
j − uku

†
k ⇒

G 2
λ = 1, Gλui = ui

( i,j,k are permutations of 1,2,3)
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G to U

given G, choose a nondegenerate F ∈ G of order n > 2,
and a G ∈ G of order 2

non-degeneracy of F ensures Me to be diagonal when F is

choose any 3-dimensional unitary irreducible representation

compute the invariant eigenvector u of G in the
F -diagonal representation

u constitutes a column of the mixing matrix U. Compare with
experiment
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III

∆(150)



Structure and Representation

structure

representation

∆(150) = (Z5 × Z5) o Z3 o Z2

f4 f3 f2 f1

f d4 f c3 f b2 f a1 ∈ G

f2f4 = f4f3f2, f2f3 = f 2
4 f

3
3 f2

f1f4 = f 4
4 f

4
3 f1, f1f3 = f3f1,

f1f2 = f 2
2 f1

13 classes, of orders
1(1), 2(1), 3(1), 5(6), 10(4)

13 irreducible representations, of
dimensions 1(2), 2(1), 3(8), 6(2)

the 3-dim and 6-dim
representations are complex

{representation of e and ν:
λ = 5}

the 1-dim and 2-dim
representations are real

{representation of N,E :
ρ, ε = [3, 1] (or [3, 2])}
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Group Theory of Mixing

F †λM
e
Fλ = M

e
= M

e†
GT
λ M

ν
Gλ = M

ν
= M

νT

charged leptons (ω = e2πi/3, η = e2πi/5) neutrino

Fλ =

 0 0 1
1 0 0
0 1 0



M
e

=

 α β β∗

β∗ α β
β β∗ α



V = 1√
3

 ω ω2 1
ω2 ω 1
1 1 1



V †FV = diag(ω2, ω, 1)

V †M
e
V = diag

Gλ = −

 0 η3 0
η2 0 0
0 0 1



M
ν

=

 a b c
b aη cη3

c cη3 f



u′3 := 1√
2

 −η3

1
0

,

Gλu
′
3 = u′3

M
ν
u′3 = m3u

′
3
∗

m3 = aη − bη3

|u3| = |V †u′3| =

 .179
.607
.777

 ⇒ sin2 2θ13 = 0.11
sin2 2θ23 = 0.94
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Dynamical Model G → [Zn,Z2]

−L = E cM
e
caea + NcM

ν
caνa + 1

2
NcM

N
caNa + h.c.

residual symmetry :L → L
e → Fλe, E → FεE
ν → Gλν, N → GρN

General

Charged Leptons

G-invariant L

Mca →
∑

b hB〈Cc|Bb,Aa〉φ
B
b

G → (F ,G) (residual symmetry)

φB → 〈φB〉

B〈φB〉 = 〈φB〉

e : C = F[3,1], A = F5

ν : C = G[3,1], A = G5

N: C = G[3,1], A = G[3,1]

F[3,1] =

 ω 0 0
0 ω2 0
0 0 1


F5 =

 0 0 1
1 0 0
0 1 0


Me =

 xω xω2 x
yω2 yω y
z z z


V †F5V =

 ω2 0 0
0 ω 0
0 0 1



V †M
e
V = 3

 |y |2 0 0
0 |x|2 0
0 0 |z|2
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B〈φB〉 = 〈φB〉

e : C = F[3,1], A = F5

ν : C = G[3,1], A = G5

N: C = G[3,1], A = G[3,1]

F[3,1] =

 ω 0 0
0 ω2 0
0 0 1


F5 =

 0 0 1
1 0 0
0 1 0


Me =

 xω xω2 x
yω2 yω y
z z z



V †F5V =

 ω2 0 0
0 ω 0
0 0 1



V †M
e
V = 3

 |y |2 0 0
0 |x|2 0
0 0 |z|2
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Neutrino (Group Theory) (Dynamical Theory) ν ∼ 5, N ∼ [3, 1]

Mν =

 α β γ
−βη2 −αη3 −γ
δ δη3 ε



(MN )−1 =

 A B Cη2

B Aη C
Cη2 C D



M
ν

=

 a b c
b aη cη3

c cη3 f



u′3 := 1√
2

 −η3

1
0

,
M
ν
u′3 = m3u

′
3
∗

m3 = aη − bη3

|u3| = |V †u′3| =

 .179
.607
.777


sin2 2θ13 = 0.11
sin2 2θ23 = 0.94

Mν =

 α β 0
−βη2 −αη3 0
δ δη3 0



(MN )−1 =

 0 B 0
B 0 0
0 0 D



M
ν

=

 a b 0
b aη 0
0 0 0



u′1 := 1√
2

 η3

1
0

 , u′2 =

 0
0
1


m1 = aη + bη3, m2 = 0

|u1| = |V †u′1| =

 .799
.547
.252



|u2| = |V †u′2| =

 .577
.577
.577
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Solar Angle and CP Phase

|U| =

 .799 .577 .179
.547 .577 .607
.252 .577 .777



sin2 2θ13 = 0.11, sin2 2θ23 = 0.94, sin2 2θ12 = 0.90, δ = 0
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Conclusion ∆(150)

Theory

Group sin2 2θ12 0.11
Theory sin2 2θ23 0.94

Dynamical sin2 2θ12 0.90
Theory δ 0
(tree) m2 0

Experiment

.089± .010± .005 | .109± .030± .025
.113± .013± .019 | .104± .060/.045

.96± .04 | .97± .03/.08

.95± .10± .01
?

(∆m)2
23 = 2.32× 10−3eV2

(∆m)2
12 = 7.59× 10−5 eV2

Theoretical predictions contain no adjustable parameters

Mixing Parameters: good approximation to reality

Neutrino Masses: m2 = 0 ⇒ m1 = 0, fair approximation as

(∆m12)2 � (∆m23)2

Tree theory gives a reasonable prediction, though a small higher order
correction is needed for accuracy
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