A Family Symmetry that Yields the Measured Reactor Angle

C.S. Lam (Harry)

McGill University and the U. of British Columbia

Canada
November 2012, TRIUMF

CONTENTS

I. Introduction and Results
II. Symmetry and Mixing
III. $\Delta(150)$

I

Introduction

Is there a finite family symmetry consistent with the neutrino mixing data?
electroweak

Particles	$\left[S U(2), U(1)_{Y}\right]$	$\rightarrow U(1)_{Q}$	
$\nu_{a}:=\left(\nu_{e}, \nu_{\mu}, \nu_{\tau}\right)$	$[2,-1]$	Q	
$N_{a}:=\left(N_{e}, N_{\mu}, N_{\tau}\right)$	$[1,0]$	Q	
$e_{a}:=\left(e_{L}, \mu_{L}, \tau_{L}\right)$	$[2,-1]$	Q	
$E_{a}:=\left(e_{R}, \mu_{R}, \tau_{R}\right)$	$[1,-2]$	Q	

electroweak family

Particles	$\left[S U(2), U(1)_{Y}\right]$	$\rightarrow U(1)_{Q}$	$\mathcal{G}=$ Family Symmetry	
$\nu_{a}:=\left(\nu_{e}, \nu_{\mu}, \nu_{\tau}\right)$	$[2,-1]$	Q	λ	.
$N_{a}:=\left(N_{e}, N_{\mu}, N_{\tau}\right)$	$[1,0]$	Q	ρ	
$e_{a}:=\left(e_{L}, \mu_{L}, \tau_{L}\right)$	$[2,-1]$	Q	λ	
$E_{a}:=\left(e_{R}, \mu_{R}, \tau_{R}\right)$	$[1,-2]$	Q	ϵ	.

- \mathcal{G} assumed to be a finite subgroup of $\operatorname{SU}(3)$
- λ, ϵ, ρ : irreducible representations of \mathcal{G}
electroweak family

Particles	$\left[S U(2), U(1)_{Y}\right]$	$\rightarrow U(1)_{Q}$	$\mathcal{G}=$ Family Symmetry	$\rightarrow\left[Z_{n}, Z_{2}\right]$ Residual Symmetry
$\nu_{a}:=\left(\nu_{e}, \nu_{\mu}, \nu_{\tau}\right)$	$[2,-1]$	Q	λ	G
$N_{a}:=\left(N_{e}, N_{\mu}, N_{\tau}\right)$	$[1,0]$	Q	ρ	G

- \mathcal{G} assumed to be a finite subgroup of $\operatorname{SU}(3)$
- λ, ϵ, ρ : irreducible representations of \mathcal{G}
- $F, G \in \mathcal{G}$ generates $Z_{n}, Z_{2} \subset \mathcal{G}$ respectively
- assume $F^{\dagger} F=1=G^{\dagger} G$
- $F \neq G$, or else there would be no neutrino mixing
electroweak
family
\(\left.$$
\begin{array}{|c|cc|cc|}\hline \text { Particles } & {\left[S U(2), U(1)_{Y}\right]} & \rightarrow U(1)_{Q} & \begin{array}{c}\mathcal{G}=\text { Family } \\
\text { Symmetry }\end{array}
$$ \& \rightarrow\left[Z_{n}, Z_{2}\right] Residual

Symmetry\end{array}\right]\)| $\nu_{a}:=\left(\nu_{e}, \nu_{\mu}, \nu_{\tau}\right)$ | $[2,-1]$ | Q | λ | G |
| :---: | :---: | :---: | :---: | :---: |
| $N_{a}:=\left(N_{e}, N_{\mu}, N_{\tau}\right)$ | $[1,0]$ | Q | ρ | G |
| $e_{a}:=\left(e_{L}, \mu_{L}, \tau_{L}\right)$ | $[2,-1]$ | Q | λ | F |
| $E_{a}:=\left(e_{R}, \mu_{R}, \tau_{R}\right)$ | $[1,-2]$ | Q | ϵ | F |

- \mathcal{G} assumed to be a finite subgroup of $\operatorname{SU}(3)$
- λ, ϵ, ρ : irreducible representations of \mathcal{G}
- $F, G \in \mathcal{G}$ generates $Z_{n}, Z_{2} \subset \mathcal{G}$ respectively
- assume $F^{\dagger} F=1=G^{\dagger} G$
- $F \neq G$, or else there would be no neutrino mixing
- $\{\mathcal{G}, F, G\} \leftrightarrow$ PMNS mixing matrix U (see Part II)

Parametrization of U

$$
\begin{gathered}
U=\left[\begin{array}{lll}
\downarrow & \downarrow & \\
c c^{\prime} & c s^{\prime} & s e^{-i \delta} \\
-s^{\prime} c^{\prime \prime}-s c^{\prime} s^{\prime \prime} e^{i \delta} & +c^{\prime} c^{\prime \prime}-s s^{\prime} s^{\prime \prime} e^{i \delta} & c s^{\prime \prime} \leftarrow \\
+s^{\prime} s^{\prime \prime}-s c^{\prime} c^{\prime \prime} e^{i \delta} & -c^{\prime} s^{\prime \prime}-s s^{\prime} c^{\prime \prime} e^{i \delta} & c c^{\prime \prime} \leftarrow
\end{array}\right] \\
s=s_{13}, s^{\prime}=s_{12}, s^{\prime \prime}=s_{23} \\
\text { reactor } \\
\text { solar atmospheric }
\end{gathered}
$$

Before T2K

- $\theta_{12}=34^{\circ}, \theta_{13}=0, \theta_{23}=45^{\circ}$
- $U \simeq$ tri-bimaximal
- $\{\mathcal{G}, F, G\}=\left\{S_{4}, Z_{3}, Z_{2}\right\}$
- $F^{3}=1, G^{2}=1$

Before T2K

After T2K

- $\theta_{12}=34^{\circ}, \theta_{13}=9^{\circ}, \theta_{23}<45^{\circ}$
- $\theta_{12}=34^{\circ}, \theta_{13}=0, \theta_{23}=45^{\circ}$
- $U \simeq$ tri-bimaximal
- $\{\mathcal{G}, F, G\}=\left\{S_{4}, Z_{3}, Z_{2}\right\}$
- $F^{3}=1, G^{2}=1$
- after scanning through all the nontrivial subgroups of $S U(3)$ of order <512 for \mathcal{G} (59 of them) (arXiv: 1208.5527) \Rightarrow
- without tunable parameters, only
$\{\mathcal{G}, F, G\}=\left\{\Delta(150), Z_{3}, Z_{2}\right\}$
works (see Part III). It predicts

Group Theory (zero parameter prediction)

- $\sin ^{2} 2 \theta_{13}=0.11$
- $\sin ^{2} 2 \theta_{23}=0.94$
(no restriction on $\theta_{12}, m_{i}, \delta$)

Experiment (Kyoto Conf., June 2012)

- Daya Bay:

$$
\sin ^{2} 2 \theta_{13}=0.089 \pm 0.010 \pm 0.005
$$

- Double Chooz:

$$
\sin ^{2} 2 \theta_{13}=0.109 \pm 0.030 \pm 0.025
$$

- RENO:

$$
\sin ^{2} 2 \theta_{13}=0.113 \pm 0.013 \pm 0.019
$$

- T2K: (N)/(I, Prelim)

$$
\begin{aligned}
& \sin ^{2} 2 \theta_{13}=0.104+0.060-0.045 \\
& \sin ^{2} 2 \theta_{13}=0.128+0.070-0.055
\end{aligned}
$$

- MINOS: $(\nu) /(\bar{\nu})$

$$
\begin{aligned}
& \sin ^{2} 2 \theta_{23}=0.96 \pm 0.04 \\
& \sin ^{2} 2 \theta_{23}=0.97 \pm 0.03 / 0.08
\end{aligned}
$$

Dynamical Theory (tree order)
(additional zero parameter predictions)

- $\sin ^{2} 2 \theta_{12}=0.90$
- $\delta=0$
- $m_{2}=0$
- higher order correction is called for

Experiment (Kyoto Conf., June 2012)

- PDG:
$\sin ^{2} 2 \theta_{12}=0.95 \pm 0.10 \pm 0.01$
- $\delta=$?
- $(\Delta m)_{23}^{2}=2.32 \times 10^{-3} \mathrm{eV}^{2}$
$(\Delta m)_{12}^{2}=7.59 \times 10^{-5} \mathrm{eV}^{2}$

Dynamical Theory (tree order)
(additional zero parameter predictions)

Experiment (Kyoto Conf., June 2012)

- PDG:
$\sin ^{2} 2 \theta_{12}=0.95 \pm 0.10 \pm 0.01$
- $\delta=$?
- $(\Delta m)_{23}^{2}=2.32 \times 10^{-3} \mathrm{eV}^{2}$
$(\Delta m)_{12}^{2}=7.59 \times 10^{-5} \mathrm{eV}^{2}$
- higher order correction is called for
- $m_{2}=0$
- $\sin ^{2} 2 \theta_{12}=0.90$
- $\delta=0$
$\Delta(150)$ gives rise to a reasonable theory without any tunable parameter!

II

Symmetry and Mixing

（Group Theory）

$$
-\mathcal{L}=\bar{E}_{a} M_{a b}^{e} e_{b}+N_{a} M_{a b}^{\nu} \nu_{b}+\frac{1}{2} N_{a} M_{a b}^{N} N_{b}+\text { h.c. } \quad\left(M_{a b}=Y_{a b}\langle H\rangle\right)
$$

$-\mathcal{L}=\bar{E}_{a} M_{a b}^{e} e_{b}+N_{a} M_{a b}^{\nu} \nu_{b}+\frac{1}{2} N_{a} M_{a b}^{N} N_{b}+$ h.c. $\quad\left(M_{a b}=Y_{a b}\langle H\rangle\right)$
effective LL mass matrix

- $\bar{M}^{e}:=M^{e \dagger} M^{e}=\bar{M}^{e \dagger}$
- $\bar{M}^{\nu}:=M^{\nu T} \frac{1}{M^{N}} M^{\nu}=\bar{M}^{\nu T}$ (type-I seesaw)

$$
-\mathcal{L}=\bar{E}_{a} M_{a b}^{e} e_{b}+N_{a} M_{a b}^{\nu} \nu_{b}+\frac{1}{2} N_{a} M_{a b}^{N} N_{b}+\text { h.c. } \quad\left(M_{a b}=Y_{a b}\langle H\rangle\right)
$$

effective LL mass matrix

- $\bar{M}^{e}:=M^{e \dagger} M^{e}=\bar{M}^{e \dagger}$
- $\bar{M}^{\nu}:=M^{\nu T} \frac{1}{M^{N}} M^{\nu}=\bar{M}^{\nu T}$ (type-I seesaw)

Neutrino Mixing Matrix U

- $U^{\top} \bar{M}^{\nu} U$ is diagonal when \bar{M}^{e} is diagonal
- $U=\left[\begin{array}{ccc}u_{1} & u_{2} & u_{3} \\ \downarrow & \downarrow & \downarrow\end{array}\right]$
$-\mathcal{L}=\bar{E}_{a} M_{a b}^{e} e_{b}+N_{a} M_{a b}^{\nu} \nu_{b}+\frac{1}{2} N_{a} M_{a b}^{N} N_{b}+$ h.c. $\quad\left(M_{a b}=Y_{a b}\langle H\rangle\right)$
effective LL mass matrix
- $\bar{M}^{e}:=M^{e \dagger} M^{e}=\bar{M}^{e \dagger}$
- $\bar{M}^{\nu}:=M^{\nu T} \frac{1}{M^{N}} M^{\nu}=\bar{M}^{\nu T}$ (type-I seesaw)

residual family symmetry

- residual symmetry: $\mathcal{L} \rightarrow \mathcal{L}$ when

$$
\begin{array}{ll}
e \rightarrow F_{\lambda} e, & E \rightarrow F_{\epsilon} E, \\
\nu \rightarrow G_{\lambda} \nu, & N \rightarrow G_{\rho} N
\end{array}
$$

Neutrino Mixing Matrix U

- $U^{T} \bar{M}^{\nu} U$ is diagonal when \bar{M}^{e} is diagonal
- $U=\left[\begin{array}{ccc}u_{1} & u_{2} & u_{3} \\ \downarrow & \downarrow & \downarrow\end{array}\right]$
$-\mathcal{L}=\bar{E}_{a} M_{a b}^{e} e_{b}+N_{a} M_{a b}^{\nu} \nu_{b}+\frac{1}{2} N_{a} M_{a b}^{N} N_{b}+$ h.c. $\quad\left(M_{a b}=Y_{a b}\langle H\rangle\right)$
effective LL mass matrix
- $\bar{M}^{e}:=M^{e \dagger} M^{e}=\bar{M}^{e \dagger}$
- $\bar{M}^{\nu}:=M^{\nu T} \frac{1}{M^{N}} M^{\nu}=\bar{M}^{\nu T}$ (type-I seesaw)

Neutrino Mixing Matrix U

- $U^{T} \bar{M}^{\nu} U$ is diagonal when \bar{M}^{e} is diagonal
- $U=\left[\begin{array}{ccc}u_{1} & u_{2} & u_{3} \\ \downarrow & \downarrow & \downarrow\end{array}\right]$

residual family symmetry

- residual symmetry: $\mathcal{L} \rightarrow \mathcal{L}$ when

$$
\begin{array}{ll}
e \rightarrow F_{\lambda} e, & E \rightarrow F_{\epsilon} E, \\
\nu \rightarrow G_{\lambda} \nu, & N \rightarrow G_{\rho} N
\end{array}
$$

- $M^{e}=F_{\epsilon}^{\dagger} M^{e} F_{\lambda}$
$\bar{M}^{e}=F_{\lambda}^{\dagger} \bar{M}^{e} F_{\lambda}$

$$
M^{\nu}=G_{\rho}^{\dagger} M^{\nu} G_{\lambda}, M^{N}=G_{\rho}^{T} M^{N} G_{\rho}
$$

$$
\bar{M}^{\nu}=G_{\lambda}^{T} \bar{M}^{\nu} G_{\lambda}
$$

$$
-\mathcal{L}=\bar{E}_{a} M_{a b}^{e} e_{b}+N_{a} M_{a b}^{\nu} \nu_{b}+\frac{1}{2} N_{a} M_{a b}^{N} N_{b}+\text { h.c. } \quad\left(M_{a b}=Y_{a b}\langle H\rangle\right)
$$

effective LL mass matrix

- $\bar{M}^{e}:=M^{e \dagger} M^{e}=\bar{M}^{e \dagger}$
- $\bar{M}^{\nu}:=M^{\nu T} \frac{1}{M^{N}} M^{\nu}=\bar{M}^{\nu T}$ (type-I seesaw)

Neutrino Mixing Matrix U

- $U^{\top} \bar{M}^{\nu} U$ is diagonal when \bar{M}^{e} is diagonal
- $U=\left[\begin{array}{ccc}u_{1} & u_{2} & u_{3} \\ \downarrow & \downarrow & \downarrow\end{array}\right]$

residual family symmetry

- residual symmetry: $\mathcal{L} \rightarrow \mathcal{L}$ when
$e \rightarrow F_{\lambda} e, \quad E \rightarrow F_{\epsilon} E$, $\nu \rightarrow G_{\lambda} \nu, \quad N \rightarrow G_{\rho} N$
- $M^{e}=F_{\epsilon}^{\dagger} M^{e} F_{\lambda}$
$\bar{M}^{e}=F_{\lambda}^{\dagger} \bar{M}^{e} F_{\lambda}$
$M^{\nu}=G_{\rho}^{\dagger} M^{\nu} G_{\lambda}, M^{N}=G_{\rho}^{\top} M^{N} G_{\rho}$
$\bar{M}^{\nu}=G_{\lambda}^{T} \bar{M}^{\nu} G_{\lambda}$
- $G_{\lambda}=u_{i} u_{i}^{\dagger}-u_{j} u_{j}^{\dagger}-u_{k} u_{k}^{\dagger} \Rightarrow$
$G_{\lambda}^{2}=1, \quad G_{\lambda} u_{i}=u_{i}$
($\mathrm{i}, \mathrm{j}, \mathrm{k}$ are permutations of $1,2,3$)
- given \mathcal{G}, choose a nondegenerate $F \in \mathcal{G}$ of order $n>2$, and a $G \in \mathcal{G}$ of order 2
- non-degeneracy of F ensures \bar{M}_{e} to be diagonal when F is
- choose any 3-dimensional unitary irreducible representation
- compute the invariant eigenvector u of G in the F-diagonal representation
- u constitutes a column of the mixing matrix U. Compare with experiment

III

$\Delta(150)$

Structure and Representation

structure

- $\Delta(150)=\left(Z_{5} \times Z_{5}\right) \rtimes Z_{3} \rtimes Z_{2}$

$$
\begin{array}{llll}
f_{4} & f_{3} & f_{2} & f_{1}
\end{array}
$$

- $f_{4}^{d} f_{3}^{c} f_{2}^{b} f_{1}^{a} \in \mathcal{G}$
- $f_{2} f_{4}=f_{4} f_{3} f_{2}, f_{2} f_{3}=f_{4}^{2} f_{3}^{3} f_{2}$
$f_{1} f_{4}=f_{4}^{4} f_{3}^{4} f_{1}, f_{1} f_{3}=f_{3} f_{1}$, $f_{1} f_{2}=f_{2}^{2} f_{1}$

Structure and Representation

structure

- $\Delta(150)=\left(Z_{5} \times Z_{5}\right) \rtimes Z_{3} \rtimes Z_{2}$

$$
\begin{array}{llll}
f_{4} & f_{3} & f_{2} & f_{1}
\end{array}
$$

- $f_{4}^{d} f_{3}^{c} f_{2}^{b} f_{1}^{a} \in \mathcal{G}$
- $f_{2} f_{4}=f_{4} f_{3} f_{2}, f_{2} f_{3}=f_{4}^{2} f_{3}^{3} f_{2}$

$$
\begin{aligned}
f_{1} f_{4}=f_{4}^{4} f_{3}^{4} f_{1}, f_{1} f_{3} & =f_{3} f_{1}, \\
f_{1} f_{2} & =f_{2}^{2} f_{1}
\end{aligned}
$$

- 13 classes, of orders 1(1), 2(1), 3(1), 5(6), 10(4)

Structure and Representation

structure

- $\Delta(150)=\left(Z_{5} \times Z_{5}\right) \rtimes Z_{3} \rtimes Z_{2}$ $\begin{array}{llll}f_{4} & f_{3} & f_{2} & f_{1}\end{array}$
- $f_{4}^{d} f_{3}^{c} f_{2}^{b} f_{1}^{a} \in \mathcal{G}$
- $f_{2} f_{4}=f_{4} f_{3} f_{2}, f_{2} f_{3}=f_{4}^{2} f_{3}^{3} f_{2}$
$f_{1} f_{4}=f_{4}^{4} f_{3}^{4} f_{1}, f_{1} f_{3}=f_{3} f_{1}$,

$$
f_{1} f_{2}=f_{2}^{2} f_{1}
$$

- 13 classes, of orders 1(1), 2(1), 3(1), 5(6), 10(4)

representation

- 13 irreducible representations, of dimensions 1(2), 2(1), 3(8), 6(2)

Structure and Representation

structure

- $\Delta(150)=\left(Z_{5} \times Z_{5}\right) \rtimes Z_{3} \rtimes Z_{2}$ $\begin{array}{llll}f_{4} & f_{3} & f_{2} & f_{1}\end{array}$
- $f_{4}^{d} f_{3}^{c} f_{2}^{b} f_{1}^{a} \in \mathcal{G}$
- $f_{2} f_{4}=f_{4} f_{3} f_{2}, f_{2} f_{3}=f_{4}^{2} f_{3}^{3} f_{2}$
$f_{1} f_{4}=f_{4}^{4} f_{3}^{4} f_{1}, f_{1} f_{3}=f_{3} f_{1}$,

$$
f_{1} f_{2}=f_{2}^{2} f_{1}
$$

- 13 classes, of orders 1(1), 2(1), 3(1), 5(6), 10(4)
- 13 irreducible representations, of dimensions 1(2), 2(1), 3(8), 6(2)
- the 3 -dim and 6 -dim representations are complex $\{$ representation of e and ν : $\lambda=5\}$
- the 1-dim and 2-dim representations are real \{representation of N, E : $\rho, \epsilon=[3,1]$ (or [3, 2]) $\}$

Group Theory of Mixing

$$
F_{\lambda}^{\dagger} \bar{M}^{e} F_{\lambda}=\bar{M}^{e}=\bar{M}^{e \dagger} \quad G_{\lambda}^{T} \bar{M}^{\nu} G_{\lambda}=\bar{M}^{\nu}=\bar{M}^{\nu T}
$$

charged leptons $\left(\omega=e^{2 \pi i / 3}, \eta=e^{2 \pi i / 5}\right) \quad \underline{\text { neutrino }}$

- $F_{\lambda}=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$
- $\bar{M}^{e}=\left[\begin{array}{lll}\alpha & \beta & \beta^{*} \\ \beta^{*} & \alpha & \beta \\ \beta & \beta^{*} & \alpha\end{array}\right]$

Group Theory of Mixing

$$
F_{\lambda}^{\dagger} \bar{M}^{e} F_{\lambda}=\bar{M}^{e}=\bar{M}^{e \dagger} \quad G_{\lambda}^{T} \bar{M}^{\nu} G_{\lambda}=\bar{M}^{\nu}=\bar{M}^{\nu T}
$$

charged leptons $\left(\omega=e^{2 \pi i / 3}, \eta=e^{2 \pi i / 5}\right) \quad$ neutrino

- $F_{\lambda}=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$
- $\bar{M}^{e}=\left[\begin{array}{lll}\alpha & \beta & \beta^{*} \\ \beta^{*} & \alpha & \beta \\ \beta & \beta^{*} & \alpha\end{array}\right]$
- $V=\frac{1}{\sqrt{3}}\left[\begin{array}{lll}\omega & \omega^{2} & 1 \\ \omega^{2} & \omega & 1 \\ 1 & 1 & 1\end{array}\right]$
- $V^{\dagger} F V=\operatorname{diag}\left(\omega^{2}, \omega, 1\right)$
- $V^{\dagger} \bar{M}^{e} V=\operatorname{diag}$

Group Theory of Mixing

$$
F_{\lambda}^{\dagger} \bar{M}^{e} F_{\lambda}=\bar{M}^{e}=\bar{M}^{e \dagger} \quad G_{\lambda}^{T} \bar{M}^{\nu} G_{\lambda}=\bar{M}^{\nu}=\bar{M}^{\nu T}
$$

charged leptons $\left(\omega=e^{2 \pi i / 3}, \eta=e^{2 \pi i / 5}\right) \quad$ neutrino

- $F_{\lambda}=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$
- $G_{\lambda}=-\left[\begin{array}{lll}0 & \eta^{3} & 0 \\ \eta^{2} & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$
- $\bar{M}^{e}=\left[\begin{array}{lll}\alpha & \beta & \beta^{*} \\ \beta^{*} & \alpha & \beta \\ \beta & \beta^{*} & \alpha\end{array}\right]$
$\bar{M}^{\nu}=\left[\begin{array}{lll}a & b & c \\ b & a \eta & c \eta^{3} \\ c & c \eta^{3} & f\end{array}\right]$
- $V=\frac{1}{\sqrt{3}}\left[\begin{array}{lll}\omega & \omega^{2} & 1 \\ \omega^{2} & \omega & 1 \\ 1 & 1 & 1\end{array}\right]$
- $V^{\dagger} F V=\operatorname{diag}\left(\omega^{2}, \omega, 1\right)$
- $V^{\dagger} \bar{M}^{e} V=\operatorname{diag}$

Group Theory of Mixing

$$
F_{\lambda}^{\dagger} \bar{M}^{e} F_{\lambda}=\bar{M}^{e}=\bar{M}^{e \dagger} \quad G_{\lambda}^{T} \bar{M}^{\nu} G_{\lambda}=\bar{M}^{\nu}=\bar{M}^{\nu T}
$$

charged leptons $\left(\omega=e^{2 \pi i / 3}, \eta=e^{2 \pi i / 5}\right) \quad \underline{\text { neutrino }}$

- $F_{\lambda}=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$
- $G_{\lambda}=-\left[\begin{array}{lll}0 & \eta^{3} & 0 \\ \eta^{2} & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$
- $\bar{M}^{e}=\left[\begin{array}{lll}\alpha & \beta & \beta^{*} \\ \beta^{*} & \alpha & \beta \\ \beta & \beta^{*} & \alpha\end{array}\right]$
- $\bar{M}^{\nu}=\left[\begin{array}{lll}a & b & c \\ b & a \eta & c \eta^{3} \\ c & c \eta^{3} & f\end{array}\right]$
- $V=\frac{1}{\sqrt{3}}\left[\begin{array}{lll}\omega & \omega^{2} & 1 \\ \omega^{2} & \omega & 1 \\ 1 & 1 & 1\end{array}\right]$
- $u_{3}^{\prime}:=\frac{1}{\sqrt{2}}\left[\begin{array}{c}-\eta^{3} \\ 1 \\ 0\end{array}\right], \begin{gathered}G_{\lambda} u_{3}^{\prime}=u_{3}^{\prime} \\ \bar{M}^{\nu} u_{3}^{\prime}=m_{3} u_{3}^{\prime *} \\ m_{3}=a \eta-b \eta^{3}\end{gathered}$
- $V^{\dagger} F V=\operatorname{diag}\left(\omega^{2}, \omega, 1\right)$
- $V^{\dagger} \bar{M}^{e} V=\operatorname{diag}$

$$
-\left|u_{3}\right|=\left|V^{\dagger} u_{3}^{\prime}\right|=\left[\begin{array}{c}
.179 \\
.607 \\
.777
\end{array}\right] \Rightarrow \begin{aligned}
& \sin ^{2} 2 \theta_{13}=0.11 \\
& \sin ^{2} 2 \theta_{23}=0.94
\end{aligned}
$$

$$
-\mathcal{L}=\bar{E}_{c} M_{c a}^{e} e_{a}+N_{c} M_{c a}^{\nu} \nu_{a}+\frac{1}{2} N_{c} M_{c a}^{N} N_{a}+\text { h.c. }
$$

$$
\begin{aligned}
& \text { residual symmetry : } \mathcal{L} \rightarrow \mathcal{L} \\
& e \rightarrow F_{\lambda} e, \quad E \rightarrow F_{\epsilon} E \\
& \nu \rightarrow G_{\lambda} \nu, \quad N \rightarrow G_{\rho} N
\end{aligned}
$$

General

- \mathcal{G}-invariant \mathcal{L}

$$
M_{c a} \rightarrow \sum_{b} h_{B}\langle C c \mid B b, A a\rangle \phi_{b}^{B}
$$

$$
-\mathcal{L}=\bar{E}_{c} M_{c a}^{e} e_{a}+N_{c} M_{c a}^{\nu} \nu_{a}+\frac{1}{2} N_{c} M_{c a}^{N} N_{a}+\text { h.c. }
$$

$$
\begin{aligned}
& \text { residual symmetry : } \mathcal{L} \rightarrow \mathcal{L} \\
& e \rightarrow F_{\lambda} e, \quad E \rightarrow F_{\epsilon} E \\
& \nu \rightarrow G_{\lambda} \nu, \quad N \rightarrow G_{\rho} N
\end{aligned}
$$

General

- \mathcal{G}-invariant \mathcal{L}

$$
M_{c a} \rightarrow \sum_{b} h_{B}\langle C c \mid B b, A a\rangle \phi_{b}^{B}
$$

- $\mathcal{G} \rightarrow(F, G) \quad$ (residual symmetry)

$$
\begin{aligned}
& \phi^{B} \rightarrow\left\langle\phi^{B}\right\rangle \\
& B\left\langle\phi^{B}\right\rangle=\left\langle\phi^{B}\right\rangle
\end{aligned}
$$

$$
-\mathcal{L}=\bar{E}_{c} M_{c a}^{e} e_{a}+N_{c} M_{c a}^{\nu} \nu_{a}+\frac{1}{2} N_{c} M_{c a}^{N} N_{a}+\text { h.c. }
$$

$$
\begin{aligned}
& \text { residual symmetry : } \mathcal{L} \rightarrow \mathcal{L} \\
& e \rightarrow F_{\lambda} e, \quad E \rightarrow F_{\epsilon} E \\
& \nu \rightarrow G_{\lambda} \nu, \quad N \rightarrow G_{\rho} N
\end{aligned}
$$

General

- \mathcal{G}-invariant \mathcal{L}

$$
M_{c a} \rightarrow \sum_{b} h_{B}\langle C c \mid B b, A a\rangle \phi_{b}^{B}
$$

- $\mathcal{G} \rightarrow(F, G) \quad$ (residual symmetry)

$$
\begin{aligned}
& \phi^{B} \rightarrow\left\langle\phi^{B}\right\rangle \\
& B\left\langle\phi^{B}\right\rangle=\left\langle\phi^{B}\right\rangle \\
& e: C=F_{[3,1]}, A=F_{5} \\
& \nu: C=G_{[3,1]}, A=G_{5} \\
& N: C=G_{[3,1]}, A=G_{[3,1]}
\end{aligned}
$$

$$
-\mathcal{L}=\bar{E}_{c} M_{c a}^{e} e_{a}+N_{c} M_{c a}^{\nu} \nu_{a}+\frac{1}{2} N_{c} M_{c a}^{N} N_{a}+\text { h.c. }
$$

$$
\begin{aligned}
& \text { residual symmetry : } \mathcal{L} \rightarrow \mathcal{L} \\
& e \rightarrow F_{\lambda} e, \quad E \rightarrow F_{\epsilon} E \\
& \nu \rightarrow G_{\lambda} \nu, \quad N \rightarrow G_{\rho} N
\end{aligned}
$$

General

- \mathcal{G}-invariant \mathcal{L}

$$
M_{c a} \rightarrow \sum_{b} h_{B}\langle C c \mid B b, A a\rangle \phi_{b}^{B}
$$

- $\mathcal{G} \rightarrow(F, G) \quad$ (residual symmetry)

$$
\begin{aligned}
& \phi^{B} \rightarrow\left\langle\phi^{B}\right\rangle \\
& B\left\langle\phi^{B}\right\rangle=\left\langle\phi^{B}\right\rangle \\
& e: C=F_{[3,1]}, A=F_{5} \\
& \nu: C=G_{[3,1]}, A=G_{5} \\
& N: C=G_{[3,1]}, A=G_{[3,1]}
\end{aligned}
$$

Charged Leptons

- $F_{[3,1]}=\left[\begin{array}{lll}\omega & 0 & 0 \\ 0 & \omega^{2} & 0 \\ 0 & 0 & 1\end{array}\right]$

$$
F_{5}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

- $M^{e}=\left[\begin{array}{lll}x \omega & x \omega^{2} & x \\ y \omega^{2} & y \omega & y \\ z & z & z\end{array}\right]$

$$
-\mathcal{L}=\bar{E}_{c} M_{c a}^{e} e_{a}+N_{c} M_{c a}^{\nu} \nu_{a}+\frac{1}{2} N_{c} M_{c a}^{N} N_{a}+\text { h.c. }
$$

$$
\begin{aligned}
& \text { residual symmetry : } \mathcal{L} \rightarrow \mathcal{L} \\
& e \rightarrow F_{\lambda} e, \quad E \rightarrow F_{\epsilon} E \\
& \nu \rightarrow G_{\lambda} \nu, \quad N \rightarrow G_{\rho} N
\end{aligned}
$$

General

- \mathcal{G}-invariant \mathcal{L}

$$
M_{c a} \rightarrow \sum_{b} h_{B}\langle C c \mid B b, A a\rangle \phi_{b}^{B}
$$

- $\mathcal{G} \rightarrow(F, G) \quad$ (residual symmetry)

$$
\begin{aligned}
& \phi^{B} \rightarrow\left\langle\phi^{B}\right\rangle \\
& B\left\langle\phi^{B}\right\rangle=\left\langle\phi^{B}\right\rangle \\
& e: C=F_{[3,1]}, A=F_{5} \\
& \nu: C=G_{[3,1]}, A=G_{5} \\
& N: C=G_{[3,1]}, A=G_{[3,1]}
\end{aligned}
$$

Charged Leptons

- $F_{[3,1]}=\left[\begin{array}{lll}\omega & 0 & 0 \\ 0 & \omega^{2} & 0 \\ 0 & 0 & 1\end{array}\right]$
$F_{5}=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$
- $M^{e}=\left[\begin{array}{lll}x \omega & x \omega^{2} & x \\ y \omega^{2} & y \omega & y \\ z & z & z\end{array}\right]$
- $V^{\dagger} F_{5} V=\left[\begin{array}{lll}\omega^{2} & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & 1\end{array}\right]$
- $V^{\dagger} \bar{M}^{e} V=3\left[\begin{array}{lll}|y|^{2} & 0 & 0 \\ 0 & |x|^{2} & 0 \\ 0 & 0 & |z|^{2}\end{array}\right]$

Neutrino (Group Theory)
(Dynamical Theory) $\nu \sim 5, N \sim[3,1]$

- $M^{\nu}=\left[\begin{array}{ccc}\alpha & \beta & \gamma \\ -\beta \eta^{2} & -\alpha \eta^{3} & -\gamma \\ \delta & \delta \eta^{3} & \epsilon\end{array}\right]$
- $\left(M^{N}\right)^{-1}=\left[\begin{array}{ccc}A & B & C \eta^{2} \\ B & A \eta & C \\ C \eta^{2} & C & D\end{array}\right]$
- $\bar{M}^{\nu}=\left[\begin{array}{lll}a & b & c \\ b & a \eta & c \eta^{3} \\ c & c \eta^{3} & f\end{array}\right]$

Neutrino (Group Theory)
(Dynamical Theory) $\nu \sim 5, N \sim[3,1]$

- $M^{\nu}=\left[\begin{array}{ccc}\alpha & \beta & \gamma \\ -\beta \eta^{2} & -\alpha \eta^{3} & -\gamma \\ \delta & \delta \eta^{3} & \epsilon\end{array}\right]$
- $\left(M^{N}\right)^{-1}=\left[\begin{array}{ccc}A & B & C \eta^{2} \\ B & A \eta & C \\ C \eta^{2} & C & D\end{array}\right]$
- $\bar{M}^{\nu}=\left[\begin{array}{lll}a & b & c \\ b & a \eta & c \eta^{3} \\ c & c \eta^{3} & f\end{array}\right]$
- $u_{3}^{\prime}:=\frac{1}{\sqrt{2}}\left[\begin{array}{c}-\eta^{3} \\ 1 \\ 0\end{array}\right], \begin{aligned} & \bar{M}^{\nu} u_{3}^{\prime}=m_{3} u_{3}^{\prime *} \\ & m_{3}=a \eta-b \eta^{3}\end{aligned}$
- $\left|u_{3}\right|=\left|V^{\dagger} u_{3}^{\prime}\right|=\left[\begin{array}{c}.179 \\ .607 \\ .777\end{array}\right]$
$\sin ^{2} 2 \theta_{13}=0.11$
$\sin ^{2} 2 \theta_{23}=0.94$

Neutrino (Group Theory)

- $M^{\nu}=\left[\begin{array}{ccc}\alpha & \beta & \gamma \\ -\beta \eta^{2} & -\alpha \eta^{3} & -\gamma \\ \delta & \delta \eta^{3} & \epsilon\end{array}\right]$
- $\left(M^{N}\right)^{-1}=\left[\begin{array}{ccc}A & B & C \eta^{2} \\ B & A \eta & C \\ C \eta^{2} & C & D\end{array}\right]$
- $\bar{M}^{\nu}=\left[\begin{array}{lll}a & b & c \\ b & a \eta & c \eta^{3} \\ c & c \eta^{3} & f\end{array}\right]$
- $u_{3}^{\prime}:=\frac{1}{\sqrt{2}}\left[\begin{array}{c}-\eta^{3} \\ 1 \\ 0\end{array}\right], \begin{aligned} & \bar{M}^{\nu} u_{3}^{\prime}=m_{3} u_{3}^{\prime *} \\ & m_{3}=a \eta-b \eta^{3}\end{aligned}$
- $\left|u_{3}\right|=\left|V^{\dagger} u_{3}^{\prime}\right|=\left[\begin{array}{l}.179 \\ .607 \\ .777\end{array}\right]$

$$
\begin{aligned}
& \sin ^{2} 2 \theta_{13}=0.11 \\
& \sin ^{2} 2 \theta_{23}=0.94
\end{aligned}
$$

(Dynamical Theory) $\nu \sim 5, N \sim[3,1]$

- $M^{\nu}=\left[\begin{array}{ccc}\alpha & \beta & 0 \\ -\beta \eta^{2} & -\alpha \eta^{3} & 0 \\ \delta & \delta \eta^{3} & 0\end{array}\right]$
- $\left(M^{N}\right)^{-1}=\left[\begin{array}{lll}0 & B & 0 \\ B & 0 & 0 \\ 0 & 0 & D\end{array}\right]$
- $\bar{M}^{\nu}=\left[\begin{array}{lll}a & b & 0 \\ b & a \eta & 0 \\ 0 & 0 & 0\end{array}\right]$

Neutrino (Group Theory)

- $M^{\nu}=\left[\begin{array}{ccc}\alpha & \beta & \gamma \\ -\beta \eta^{2} & -\alpha \eta^{3} & -\gamma \\ \delta & \delta \eta^{3} & \epsilon\end{array}\right]$
- $\left(M^{N}\right)^{-1}=\left[\begin{array}{ccc}A & B & C \eta^{2} \\ B & A \eta & C \\ C \eta^{2} & C & D\end{array}\right]$
- $\bar{M}^{\nu}=\left[\begin{array}{lll}a & b & c \\ b & a \eta & c \eta^{3} \\ c & c \eta^{3} & f\end{array}\right]$
- $u_{3}^{\prime}:=\frac{1}{\sqrt{2}}\left[\begin{array}{c}-\eta^{3} \\ 1 \\ 0\end{array}\right], \begin{aligned} & \bar{M}^{\nu} u_{3}^{\prime}=m_{3} u_{3}^{\prime *} \\ & m_{3}=a \eta-b \eta^{3}\end{aligned}$
- $\left|u_{3}\right|=\left|V^{\dagger} u_{3}^{\prime}\right|=\left[\begin{array}{l}.179 \\ .607 \\ .777\end{array}\right]$

$$
\begin{aligned}
\sin ^{2} 2 \theta_{13} & =0.11 \\
\sin ^{2} 2 \theta_{23} & =0.94
\end{aligned}
$$

(Dynamical Theory) $\nu \sim 5, N \sim[3,1]$

- $M^{\nu}=\left[\begin{array}{ccc}\alpha & \beta & 0 \\ -\beta \eta^{2} & -\alpha \eta^{3} & 0 \\ \delta & \delta \eta^{3} & 0\end{array}\right]$
- $\left(M^{N}\right)^{-1}=\left[\begin{array}{lll}0 & B & 0 \\ B & 0 & 0 \\ 0 & 0 & D\end{array}\right]$
- $\bar{M}^{\nu}=\left[\begin{array}{lll}a & b & 0 \\ b & a \eta & 0 \\ 0 & 0 & 0\end{array}\right]$
- $u_{1}^{\prime}:=\frac{1}{\sqrt{2}}\left[\begin{array}{c}\eta^{3} \\ 1 \\ 0\end{array}\right], u_{2}^{\prime}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
$m_{1}=a \eta+b \eta^{3}, m_{2}=0$
- $\left|u_{1}\right|=\left|V^{\dagger} u_{1}^{\prime}\right|=\left[\begin{array}{l}.799 \\ .547 \\ .252\end{array}\right]$
$\left|u_{2}\right|=\left|V^{\dagger} u_{2}^{\prime}\right|=\left[\begin{array}{l}.577 \\ .577 \\ .577\end{array}\right]$

Solar Angle and CP Phase

$$
\begin{gathered}
|U|=\left[\begin{array}{lll}
.799 & .577 & .179 \\
.547 & .577 & .607 \\
.252 & .577 & .777
\end{array}\right] \\
U=\left[\begin{array}{lll}
\downarrow & \downarrow & s e^{-i \delta} \\
c c^{\prime} & c s^{\prime} & \\
-s^{\prime} c^{\prime \prime}-s c^{\prime} s^{\prime \prime} e^{i \delta} & +c^{\prime} c^{\prime \prime}-s s^{\prime} s^{\prime \prime} e^{i \delta} & c s^{\prime \prime} \leftarrow \\
+s^{\prime} s^{\prime \prime}-s c^{\prime} c^{\prime \prime} e^{i \delta} & -c^{\prime} s^{\prime \prime}-s s^{\prime} c^{\prime \prime} e^{i \delta} & c c^{\prime \prime} \leftarrow
\end{array}\right] \\
s=s_{13}, s^{\prime}=s_{12}, s^{\prime \prime}=s_{23} \\
\sin ^{2} 2 \theta_{13}=0.11, \quad \sin ^{2} 2 \theta_{23}=0.94, \quad \sin ^{2} 2 \theta_{12}=0.90, \quad \delta=0
\end{gathered}
$$

Conclusion

Experiment

		Theory
Group	$\sin ^{2} 2 \theta_{12}$	0.11
Theory	$\sin ^{2} 2 \theta_{23}$	0.94
Dynamical	$\sin ^{2} 2 \theta_{12}$	0.90
Theory (tree)	δ	0
	m_{2}	0

$.089 \pm .010 \pm .005 \mid .109 \pm .030 \pm .025$
$.113 \pm .013 \pm .019 \mid .104 \pm .060 / .045$
$.96 \pm .04 \mid .97 \pm .03 / .08$
$.95 \pm .10 \pm .01$
$?$
$(\Delta m)_{23}^{2}=2.32 \times 10^{-3} \mathrm{eV}^{2}$
$(\Delta m)_{12}^{2}=7.59 \times 10^{-5} \mathrm{eV}^{2}$

Experiment

		Theory
Group	$\sin ^{2} 2 \theta_{12}$	0.11
Theory	$\sin ^{2} 2 \theta_{23}$	0.94
Dynamical	$\sin ^{2} 2 \theta_{12}$	0.90
Theory (tree)	δ	0
	m_{2}	0

$.089 \pm .010 \pm .005 \mid .109 \pm .030 \pm .025$
$.113 \pm .013 \pm .019 \mid .104 \pm .060 / .045$
$.96 \pm .04 \mid .97 \pm .03 / .08$
$.95 \pm .10 \pm .01$
$?$
$(\Delta m)_{23}^{2}=2.32 \times 10^{-3} \mathrm{eV}^{2}$
$(\Delta m)_{12}^{2}=7.59 \times 10^{-5} \mathrm{eV}^{2}$

- Theoretical predictions contain no adjustable parameters
- Mixing Parameters: good approximation to reality
- Neutrino Masses: $m_{2}=0 \Rightarrow m_{1}=0$, fair approximation as

$$
\left(\Delta m_{12}\right)^{2} \ll\left(\Delta m_{23}\right)^{2}
$$

- Tree theory gives a reasonable prediction, though a small higher order correction is needed for accuracy

