A Family Symmetry that Yields the Measured Reactor Angle

C.S. Lam (Harry)

McGill University and the U. of British Columbia Canada

November 2012, TRIUMF

Lam

CONTENTS

I. Introduction and Results

II. Symmetry and Mixing

III. $\Delta(150)$

-

-

э

Introduction

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

I

Is there a finite family symmetry consistent with the neutrino mixing data?

Particles	$[SU(2), U(1)_Y]$	$ ightarrow U(1)_Q$	
$\nu_a := (\nu_e, \nu_\mu, \nu_\tau)$	[2, -1]	Q	
$N_a := (N_e, N_\mu, N_\tau)$	[1, 0]	Q	· .
$e_a := (e_L, \mu_L, \tau_L)$	[2, -1]	Q	
$E_a := (e_R, \mu_R, au_R)$	[1, -2]	Q	

◆□▶ ◆□▶ ◆注▶ ◆注▶ - 注

family

◆□→ ◆□→ ◆三→ ◆三→

臣

Particles	$[SU(2), U(1)_Y]$	$ ightarrow U(1)_Q$	$\mathcal{G} = Family$	
			Symmetry	
$\nu_a := (\nu_e, \nu_\mu, \nu_\tau)$	[2,-1]	Q	λ	
$N_a := (N_e, N_\mu, N_\tau)$	[1, 0]	Q	ρ	
$e_a := (e_L, \mu_L, \tau_L)$	[2,-1]	Q	λ	
$E_a := (e_R, \mu_R, \tau_R)$	[1, -2]	Q	ϵ	

- \mathcal{G} assumed to be a finite subgroup of SU(3)
- λ, ϵ, ρ : irreducible representations of $\mathcal G$

family

(中) (문) (문) (문) (문)

Particles	$[SU(2), U(1)_Y]$	$ ightarrow U(1)_Q$	$\mathcal{G} = Family$	$\rightarrow [Z_n, Z_2]$ Residual
			Symmetry	Symmetry
$\nu_a := (\nu_e, \nu_\mu, \nu_\tau)$	[2,-1]	Q	λ	$G (G^2 = 1)$
$N_a := (N_e, N_\mu, N_\tau)$	[1, 0]	Q	ρ	G.
$e_a := (e_L, \mu_L, \tau_L)$	[2,-1]	Q	λ	$F (F^n = 1)$
$E_a := (e_R, \mu_R, \tau_R)$	[1, -2]	Q	ϵ	F.

- G assumed to be a finite subgroup of SU(3)
- λ, ϵ, ρ : irreducible representations of $\mathcal G$
- $F, G \in \mathcal{G}$ generates $Z_n, Z_2 \subset \mathcal{G}$ respectively
- assume $F^{\dagger}F = 1 = G^{\dagger}G$
- $F \neq G$, or else there would be no neutrino mixing

family

Particles	$[SU(2), U(1)_Y]$	$ ightarrow U(1)_Q$	$\mathcal{G} = Family$	$\rightarrow [Z_n, Z_2]$ Residual
			Symmetry	Symmetry
$\nu_a := (\nu_e, \nu_\mu, \nu_\tau)$	[2,-1]	Q	λ	$G (G^2 = 1)$
$N_a := (N_e, N_\mu, N_\tau)$	[1, 0]	Q	ρ	G.
$e_a := (e_L, \mu_L, \tau_L)$	[2,-1]	Q	λ	$F (F^n = 1)$
$E_a := (e_R, \mu_R, \tau_R)$	[1, -2]	Q	ϵ	F.

- G assumed to be a finite subgroup of SU(3)
- λ, ϵ, ρ : irreducible representations of $\mathcal G$
- $F, G \in \mathcal{G}$ generates $Z_n, Z_2 \subset \mathcal{G}$ respectively
- assume $F^{\dagger}F = 1 = G^{\dagger}G$
- $F \neq G$, or else there would be no neutrino mixing
- $\{\mathcal{G}, \mathcal{F}, \mathcal{G}\} \leftrightarrow \mathsf{PMNS} \text{ mixing matrix } U$

(see Part II)

《曰》 《聞》 《臣》 《臣》 三臣

Parametrization of U

$$U = \begin{bmatrix} \downarrow & \downarrow & \\ cc' & cs' & se^{-i\delta} \\ -s'c'' - sc's''e^{i\delta} & +c'c'' - ss's''e^{i\delta} & cs'' \leftarrow \\ +s's'' - sc'c''e^{i\delta} & -c's'' - ss'c''e^{i\delta} & cc'' \leftarrow \end{bmatrix}$$
$$s = s_{13}, \ s' = s_{12}, \ s'' = s_{23}$$

reactor solar atmospheric

= 990

() <) <)
 () <)
 () <)
</p>

Before T2K

•
$$\theta_{12} = 34^{\circ}$$
, $\theta_{13} = 0$, $\theta_{23} = 45^{\circ}$

- $U \simeq \text{tri-bimaximal}$
- $\{G, F, G\} = \{S_4, Z_3, Z_2\}$
- $F^3 = 1, G^2 = 1$

Before T2K

•
$$\theta_{12} = 34^{\circ}$$
, $\theta_{13} = 0$, $\theta_{23} = 45^{\circ}$

- $U \simeq \text{tri-bimaximal}$
- $\{G, F, G\} = \{S_4, Z_3, Z_2\}$
- $F^3 = 1, G^2 = 1$

After T2K

•
$$heta_{12}=34^\circ$$
, $heta_{13}=9^\circ$, $heta_{23}<45^\circ$

- after scanning through all the nontrivial subgroups of SU(3) of order <512 for G (59 of them) (arXiv: 1208.5527) ⇒
- without tunable parameters, only

$$\{\mathcal{G}, \mathcal{F}, \mathcal{G}\} = \boxed{\{\Delta(150), \ Z_3, Z_2\}}$$

works (see Part III) . It predicts

法国际 医耳道氏

3

Group Theory (zero parameter prediction)

• $\sin^2 2\theta_{13} = 0.11$

•
$$\sin^2 2\theta_{23} = 0.94$$

(no restriction on θ_{12}, m_i, δ)

Experiment (Kyoto Conf., June 2012)

- Daya Bay: $\sin^2 2\theta_{13} = 0.089 \pm 0.010 \pm 0.005$
- Double Chooz: $\sin^2 2\theta_{13} = 0.109 \pm 0.030 \pm 0.025$
- RENO:

Lam

 $\sin^2 2\theta_{13} = 0.113 \pm 0.013 \pm 0.019$

• T2K: (N)/(I, Prelim) $\sin^2 2\theta_{13} = 0.104 + 0.060 - 0.045$ $\sin^2 2\theta_{13} = 0.128 + 0.070 - 0.055$

• MINOS: $(\nu)/(\overline{\nu})$ $\sin^2 2\theta_{23} = 0.96 \pm 0.04$ $\sin^2 2\theta_{23} = 0.97 \pm 0.03/0.08$

- 2 2 3 4 2 3 3

3

Results

Dynamical Theory (tree order) (additional zero parameter predictions) Experiment (Kyoto Conf., June 2012)

•
$$\sin^2 2\theta_{12} = 0.90$$

- $\delta = 0$
- *m*₂ = 0
- higher order correction is called for

- PDG: $\sin^2 2\theta_{12} = 0.95 \pm 0.10 \pm 0.01$
- $\delta = ?$
- $(\Delta m)_{23}^2 = 2.32 \times 10^{-3} \text{eV}^2$
 - $(\Delta m)^2_{12} = 7.59 \times 10^{-5}~{\rm eV}^2$

◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ � � � �

Results

3

Dynamical Theory (tree order) (additional zero parameter predictions)

Experiment (Kyoto Conf., June 2012)

• $\sin^2 2\theta_{12} = 0.90$ $\sin^2 2\theta_{12} = 0.95 \pm 0.10 \pm 0.01$

PDG[·]

- δ = 0 • $\delta = ?$
- $m_2 = 0$

Lam

higher order correction is called for

• $(\Delta m)_{23}^2 = 2.32 \times 10^{-3} \text{eV}^2$

$$(\Delta m)_{12}^2 = 7.59 \times 10^{-5} \ {\rm eV}^2$$

 $\Delta(150)$ gives rise to a reasonable theory without any tunable parameter!

< 同 > < 三 > < 三 >

Symmetry and Mixing

(Group Theory)

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

$$-\mathcal{L} = \overline{E}_{a} M^{e}_{ab} e_{b} + N_{a} M^{\nu}_{ab} \nu_{b} + \frac{1}{2} N_{a} M^{N}_{ab} N_{b} + \text{h.c.} \quad (M_{ab} = Y_{ab} \langle H \rangle)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$-\mathcal{L} = \overline{E}_{a} M^{e}_{ab} e_{b} + N_{a} M^{\nu}_{ab} \nu_{b} + \frac{1}{2} N_{a} M^{N}_{ab} N_{b} + \text{h.c.} \quad (M_{ab} = Y_{ab} \langle H \rangle)$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

effective LL mass matrix

- $\overline{M}^e := M^{e\dagger} M^e = \overline{M}^{e\dagger}$
- $\overline{M}^{\nu} := M^{\nu T} \frac{1}{M^{N}} M^{\nu} = \overline{M}^{\nu T}$ (type-l seesaw)

$$-\mathcal{L} = \overline{E}_{a} M^{e}_{ab} e_{b} + N_{a} M^{\nu}_{ab} \nu_{b} + \frac{1}{2} N_{a} M^{N}_{ab} N_{b} + \text{h.c.} \quad (M_{ab} = Y_{ab} \langle H \rangle)$$

<ロト <回ト < 注ト < 注ト = 注

effective LL mass matrix

• $\overline{M}^{e} := M^{e\dagger} M^{e} = \overline{M}^{e\dagger}$ • $\overline{M}^{\nu} := M^{\nu T} \frac{1}{M^{N}} M^{\nu} = \overline{M}^{\nu T}$ (type-I seesaw)

Neutrino Mixing Matrix U

• $U^T \overline{M}^{\nu} U$ is diagonal when \overline{M}^e is diagonal • $U = \begin{bmatrix} u_1 & u_2 & u_3 \\ \downarrow & \downarrow & \downarrow \end{bmatrix}$ $-\mathcal{L} = \overline{E}_{a} \frac{M_{ab}^{e}}{R_{ab}} e_{b} + N_{a} \frac{M_{ab}^{\nu}}{N_{ab}} \nu_{b} + \frac{1}{2} N_{a} \frac{M_{ab}^{N}}{N_{b}} N_{b} + \text{h.c.} \quad (M_{ab} = Y_{ab} \langle H \rangle)$

effective LL mass matrix

- $\overline{M}^e := M^{e\dagger} M^e = \overline{M}^{e\dagger}$
- $\overline{M}^{\nu} := M^{\nu T} \frac{1}{M^N} M^{\nu} = \overline{M}^{\nu T}$ (type-I seesaw)
 - Neutrino Mixing Matrix U
- $U^T \overline{M}^{\nu} U$ is diagonal when \overline{M}^e is diagonal • $U = \begin{bmatrix} u_1 & u_2 & u_3 \\ \downarrow & \downarrow & \downarrow \end{bmatrix}$

residual family symmetry

• residual symmetry: $\mathcal{L} \to \mathcal{L}$ when

<ロト <回ト < 注ト < 注ト = 注

 $e
ightarrow F_{\lambda} e, \quad E
ightarrow F_{\epsilon} E, \
u
ightarrow G_{\lambda}
u, \quad N
ightarrow G_{
ho} N$

 $-\mathcal{L} = \overline{E}_{a} \frac{M_{ab}^{e}}{R_{ab}} e_{b} + N_{a} \frac{M_{ab}^{\nu}}{N_{ab}} \nu_{b} + \frac{1}{2} N_{a} \frac{M_{ab}^{N}}{N_{b}} N_{b} + \text{h.c.} \quad (M_{ab} = Y_{ab} \langle H \rangle)$

effective LL mass matrix

- $\overline{M}^e := M^{e\dagger} M^e = \overline{M}^{e\dagger}$
- $\overline{M}^{\nu} := M^{\nu T} \frac{1}{M^{N}} M^{\nu} = \overline{M}^{\nu T}$ (type-I seesaw)

Neutrino Mixing Matrix U

• $U^T \overline{M}^{\nu} U$ is diagonal when \overline{M}^e is diagonal • $U = \begin{bmatrix} u_1 & u_2 & u_3 \\ \downarrow & \downarrow & \downarrow \end{bmatrix}$ residual family symmetry

 $\bullet\,$ residual symmetry: $\mathcal{L} \to \mathcal{L}$ when

$$e
ightarrow F_{\lambda} e, \quad E
ightarrow F_{\epsilon} E, \
u
ightarrow G_{\lambda}
u, \quad N
ightarrow G_{
ho} N$$

•
$$M^e = F^{\dagger}_{\epsilon} M^e F_{\lambda}$$

 $\overline{M}^e = F^{\dagger}_{\lambda} \overline{M}^e F_{\lambda}$
 $M^{\nu} = G^{\dagger}_{\rho} M^{\nu} G_{\lambda}, M^N = G^{T}_{\rho} M^N G_{\rho}$
 $\overline{M}^{\nu} = G^{T}_{\lambda} \overline{M}^{\nu} G_{\lambda}$

<ロト <回ト < 注ト < 注ト = 注

 $-\mathcal{L} = \overline{E}_{a} M^{e}_{ab} e_{b} + N_{a} M^{\nu}_{ab} \nu_{b} + \frac{1}{2} N_{a} M^{N}_{ab} N_{b} + \text{h.c.} \quad (M_{ab} = Y_{ab} \langle H \rangle)$

effective LL mass matrix

- $\overline{M}^e := M^{e\dagger} M^e = \overline{M}^{e\dagger}$
- $\overline{M}^{\nu} := M^{\nu T} \frac{1}{M^{N}} M^{\nu} = \overline{M}^{\nu T}$ (type-I seesaw)

Neutrino Mixing Matrix U

• $U^T \overline{M}^{\nu} U$ is diagonal when \overline{M}^e is diagonal • $U = \begin{bmatrix} u_1 & u_2 & u_3 \\ \downarrow & \downarrow & \downarrow \end{bmatrix}$ residual family symmetry

 $\bullet\,$ residual symmetry: $\mathcal{L} \to \mathcal{L}$ when

$$e
ightarrow F_{\lambda} e, \quad E
ightarrow F_{\epsilon} E, \
u
ightarrow G_{\lambda}
u, \quad N
ightarrow G_{
ho} N$$

•
$$M^e = F^{\dagger}_{\epsilon} M^e F_{\lambda}$$

 $\overline{M}^e = F^{\dagger}_{\lambda} \overline{M}^e F_{\lambda}$
 $M^{\nu} = G^{\dagger}_{\rho} M^{\nu} G_{\lambda}, M^N = G^T_{\rho} M^N G_{\rho}$
 $\overline{M}^{\nu} = G^T_{\lambda} \overline{M}^{\nu} G_{\lambda}$
• $G_{\lambda} = u_i u^{\dagger}_i - u_j u^{\dagger}_j - u_k u^{\dagger}_k \Rightarrow$
 $G^2_{\lambda} = 1, \quad G_{\lambda} u_i = u_i$
(i,j,k are permutations of 1,2,3)

◆□▶ ◆舂▶ ◆吾▶ ◆吾▶ 善吾 → ��や

- given G, choose a nondegenerate F ∈ G of order n > 2, and a G ∈ G of order 2
- non-degeneracy of F ensures \overline{M}_e to be diagonal when F is
- choose any 3-dimensional unitary irreducible representation
- compute the invariant eigenvector *u* of *G* in the *F*-diagonal representation
- *u* constitutes a column of the mixing matrix *U*. Compare with experiment

Δ(150)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

•
$$\Delta(150) = (Z_5 \times Z_5) \rtimes Z_3 \rtimes Z_2$$

 $f_4 \quad f_3 \quad f_2 \quad f_1$
• $f_4^{cd} \quad f_3^{cc} \quad f_2^{bc} \quad f_1^{ac} \in \mathcal{G}$

•
$$f_2 f_4 = f_4 f_3 f_2$$
, $f_2 f_3 = f_4^2 f_3^3 f_2$
 $f_1 f_4 = f_4^4 f_3^4 f_1$, $f_1 f_3 = f_3 f_1$,
 $f_1 f_2 = f_2^2 f_1$

Lam

æ

•
$$\Delta(150) = (Z_5 \times Z_5) \rtimes Z_3 \rtimes Z_2$$

 $f_4 \quad f_3 \quad f_2 \quad f_1$

• f_4^d f_3^c f_2^b f_1^a \in \mathcal{G}

•
$$f_2 f_4 = f_4 f_3 f_2, \quad f_2 f_3 = f_4^2 f_3^3 f_2$$

 $f_1 f_4 = f_4^4 f_3^4 f_1, \quad f_1 f_3 = f_3 f_1,$
 $f_1 f_2 = f_2^2 f_1$

13 classes, of orders
 1(1), 2(1), 3(1), 5(6), 10(4)

э

representation

- $\Delta(150) = (Z_5 \times Z_5) \rtimes Z_3 \rtimes Z_2$ $f_4 \quad f_3 \quad f_2 \quad f_1$
- f_4^d f_3^c f_2^b f_1^a \in \mathcal{G}
- $f_2 f_4 = f_4 f_3 f_2, \quad f_2 f_3 = f_4^2 f_3^3 f_2$ $f_1 f_4 = f_4^4 f_3^4 f_1, \quad f_1 f_3 = f_3 f_1,$ $f_1 f_2 = f_2^2 f_1$
- 13 classes, of orders
 1(1), 2(1), 3(1), 5(6), 10(4)

 13 irreducible representations, of dimensions 1(2), 2(1), 3(8), 6(2)

Lam

•
$$\Delta(150) = (Z_5 \times Z_5) \rtimes Z_3 \rtimes Z_2$$

 $f_4 \quad f_3 \quad f_2 \quad f_1$

- f_4^d f_3^c f_2^b f_1^a \in \mathcal{G}
- $f_2 f_4 = f_4 f_3 f_2, \quad f_2 f_3 = f_4^2 f_3^3 f_2$ $f_1 f_4 = f_4^4 f_3^4 f_1, \quad f_1 f_3 = f_3 f_1,$ $f_1 f_2 = f_2^2 f_1$
- 13 classes, of orders
 1(1), 2(1), 3(1), 5(6), 10(4)

representation

- 13 irreducible representations, of dimensions 1(2), 2(1), 3(8), 6(2)
- the 3-dim and 6-dim representations are complex {representation of e and v:

 $\lambda = 5$

• the 1-dim and 2-dim representations are real

{representation of N, E: $\rho, \epsilon = [3, 1] \text{ (or } [3, 2])$ }

Lam

$$F_{\lambda}^{\dagger}\overline{M}^{e}F_{\lambda}=\overline{M}^{e}=\overline{M}^{e\dagger}\qquad \qquad G_{\lambda}^{T}\overline{M}^{\nu}G_{\lambda}=\overline{M}^{\nu}=\overline{M}^{\nu}^{T}$$

Lam

charged leptons $(\omega = e^{2\pi i/3}, \eta = e^{2\pi i/5})$ <u>neutrino</u>

•
$$F_{\lambda} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

• $\overline{M}^{e} = \begin{bmatrix} \alpha & \beta & \beta^{*} \\ \beta^{*} & \alpha & \beta \\ \beta & \beta^{*} & \alpha \end{bmatrix}$

▲臣▶ ▲臣▶ 臣 • ���

$$F_{\lambda}^{\dagger}\overline{M}^{e}F_{\lambda}=\overline{M}^{e}=\overline{M}^{e\dagger} \qquad \qquad G_{\lambda}^{T}\overline{M}^{\nu}G_{\lambda}=\overline{M}^{\nu}=\overline{M}^{\nu}^{T}$$

charged leptons $(\omega = e^{2\pi i/3}, \eta = e^{2\pi i/5})$ <u>neutrino</u>

•
$$F_{\lambda} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

•
$$\overline{M}^{e} = \begin{bmatrix} \alpha & \beta & \beta^{*} \\ \beta^{*} & \alpha & \beta \\ \beta & \beta^{*} & \alpha \end{bmatrix}$$

•
$$V = \frac{1}{\sqrt{3}} \begin{bmatrix} \omega & \omega^{2} & 1 \\ \omega^{2} & \omega & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

•
$$V^{\dagger}FV = \text{diag}(\omega^2, \omega, 1)$$

• $V^{\dagger}\overline{M}^{e}V = \text{diag}$

ミ▶ ▲ ミ ト ミ つ へ (や

$$F_{\lambda}^{\dagger}\overline{M}^{e}F_{\lambda}=\overline{M}^{e}=\overline{M}^{e^{\dagger}}\qquad \qquad G_{\lambda}^{T}\overline{M}^{\nu}G_{\lambda}=\overline{M}^{\nu}=\overline{M}^{\nu}^{T}$$

charged leptons $(\omega = e^{2\pi i/3}, \eta = e^{2\pi i/5})$ neutrino

•
$$F_{\lambda} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

• $\overline{M}^{e} = \begin{bmatrix} \alpha & \beta & \beta^{*} \\ \beta^{*} & \alpha & \beta \\ \beta & \beta^{*} & \alpha \end{bmatrix}$
• $\overline{M}^{\nu} = \begin{bmatrix} a & b & c \\ b & a\eta & c\eta^{3} \\ c & c\eta^{3} & f \end{bmatrix}$
• $V = \frac{1}{\sqrt{3}} \begin{bmatrix} \omega & \omega^{2} & 1 \\ \omega^{2} & \omega & 1 \\ 1 & 1 & 1 \end{bmatrix}$

•
$$V^{\dagger}FV = \text{diag}(\omega^2, \omega, 1)$$

• $V^{\dagger}\overline{M}^{e}V = \text{diag}$

-

▲目▶▲目▶ 目 のへで

$$F_{\lambda}^{\dagger}\overline{M}^{e}F_{\lambda}=\overline{M}^{e}=\overline{M}^{e\dagger}\qquad \qquad G_{\lambda}^{T}\overline{M}^{\nu}G_{\lambda}=\overline{M}^{\nu}=\overline{M}^{\nu}^{T}$$

<u>charged leptons</u> $(\omega = e^{2\pi i/3}, \eta = e^{2\pi i/5})$ <u>neutrino</u>

•
$$F_{\lambda} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

• $\overline{M}^{e} = \begin{bmatrix} \alpha & \beta & \beta^{*} \\ \beta^{*} & \alpha & \beta \\ \beta & \beta^{*} & \alpha \end{bmatrix}$
• $\overline{M}^{v} = \begin{bmatrix} a & b & c \\ b & a\eta & c\eta^{3} \\ c & c\eta^{3} & f \end{bmatrix}$
• $V = \frac{1}{\sqrt{3}} \begin{bmatrix} \omega & \omega^{2} & 1 \\ \omega^{2} & \omega & 1 \\ 1 & 1 & 1 \end{bmatrix}$
• $V^{\dagger}FV = \operatorname{diag}(\omega^{2}, \omega, 1)$
• $V^{\dagger}\overline{M}^{e}V = \operatorname{diag}$
• $U_{3}^{\dagger} = |V^{\dagger}u_{3}^{\dagger}| = \begin{bmatrix} .179 \\ .607 \\ .777 \end{bmatrix} \Rightarrow \frac{\sin^{2} 2\theta_{13} = 0.11}{\sin^{2} 2\theta_{23} = 0.94}$

Lam

▲臣▶ ▲臣▶ 臣 • ���

$$-\mathcal{L} = \overline{E}_c M^e_{ca} e_a + N_c M^\nu_{ca} \nu_a + \frac{1}{2} N_c M^N_{ca} N_a + \text{h.c.}$$

residual symmetry : $\mathcal{L} \to \mathcal{L}$ $e \to F_{\lambda}e, \quad E \to F_{\epsilon}E$ $\nu \to G_{\lambda}\nu, \quad N \to G_{\rho}N$

General

 $\bullet \ \mathcal{G}\text{-invariant} \ \mathcal{L}$

 $M_{ca} \rightarrow \sum_{b} h_B \langle Cc | Bb, Aa \rangle \phi_b^B$

3

▲ 臣 ▶ ▲ 臣 ▶ = 臣 = ∽ � � �

$$-\mathcal{L} = \overline{E}_c M^e_{ca} e_a + N_c M^\nu_{ca} \nu_a + \frac{1}{2} N_c M^N_{ca} N_a + \text{h.c.}$$

residual symmetry : $\mathcal{L} \to \mathcal{L}$ $e \to F_{\lambda}e, \quad E \to F_{\epsilon}E$ $\nu \to G_{\lambda}\nu, \quad N \to G_{\rho}N$

General

• \mathcal{G} -invariant \mathcal{L}

 $M_{ca} \rightarrow \sum_{b} h_{B} \langle Cc | Bb, Aa \rangle \phi_{b}^{B}$

• $\mathcal{G} \to (F, G)$ (residual symmetry) $\phi^B \to \langle \phi^B \rangle$ $B \langle \phi^B \rangle = \langle \phi^B \rangle$

 $\mathcal{G} \rightarrow [Z_n, Z_2]$

▲ 臣 ▶ ▲ 臣 ▶ = 臣 = ∽ � � �

$$-\mathcal{L} = \overline{E}_{c} M^{e}_{ca} e_{a} + N_{c} M^{\nu}_{ca} \nu_{a} + \frac{1}{2} N_{c} M^{N}_{ca} N_{a} + \text{h.c.}$$

residual symmetry : $\mathcal{L} \to \mathcal{L}$ $e \to F_{\lambda}e, \quad E \to F_{\epsilon}E$ $\nu \to G_{\lambda}\nu, \quad N \to G_{\rho}N$

<u>General</u>

 $\bullet \ \mathcal{G}\text{-invariant} \ \mathcal{L}$

 $M_{ca} \rightarrow \sum_{b} h_{B} \langle Cc | Bb, Aa \rangle \phi_{b}^{B}$

• $\mathcal{G} \rightarrow (F, G)$ (residual symmetry) $\phi^B \rightarrow \langle \phi^B \rangle$ $B \langle \phi^B \rangle = \langle \phi^B \rangle$ $e: C = F_{[3,1]}, A = F_5$ $\nu: C = G_{[3,1]}, A = G_5$ $N: C = G_{[3,1]}, A = G_{[3,1]}$

$$\mathcal{G} \rightarrow [Z_n, Z_2]$$

$$-\mathcal{L} = \overline{E}_c M^e_{ca} e_a + N_c M^\nu_{ca} \nu_a + \frac{1}{2} N_c M^N_{ca} N_a + \text{h.c.}$$

residual symmetry : $\mathcal{L} \to \mathcal{L}$ $e \to F_{\lambda} e, \quad E \to F_{\epsilon} E$ $\nu \to G_{\lambda} \nu, \quad N \to G_{\rho} N$

<u>General</u>

 $\bullet \ \mathcal{G}\text{-invariant} \ \mathcal{L}$

 $M_{ca} \rightarrow \sum_{b} h_{B} \langle Cc | Bb, Aa \rangle \phi_{b}^{B}$

• $\mathcal{G} \rightarrow (F, G)$ (residual symmetry) $\phi^B \rightarrow \langle \phi^B \rangle$ $B \langle \phi^B \rangle = \langle \phi^B \rangle$ $e: C = F_{[3,1]}, A = F_5$ $\nu: C = G_{[3,1]}, A = G_5$ $N: C = G_{[3,1]}, A = G_{[3,1]}$

Charged Leptons

•
$$F_{[3,1]} = \begin{bmatrix} \omega & 0 & 0 \\ 0 & \omega^2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 $F_5 = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$
• $M^e = \begin{bmatrix} x\omega & x\omega^2 & x \\ y\omega^2 & y\omega & y \\ z & z & z \end{bmatrix}$

同 ト イヨ ト イヨ ト ・ ヨ ・ シ へ ()

$$-\mathcal{L} = \overline{E}_{c} M^{e}_{ca} e_{a} + N_{c} M^{\nu}_{ca} \nu_{a} + \frac{1}{2} N_{c} M^{N}_{ca} N_{a} + \text{h.c.}$$

residual symmetry : $\mathcal{L} \to \mathcal{L}$ $e \to F_{\lambda}e, \quad E \to F_{\epsilon}E$ $\nu \to G_{\lambda}\nu, \quad N \to G_{\rho}N$

General

 $\bullet \ \mathcal{G}\text{-invariant} \ \mathcal{L}$

 $M_{ca} \rightarrow \sum_{b} h_{B} \langle Cc | Bb, Aa \rangle \phi_{b}^{B}$

• $\mathcal{G} \rightarrow (F, G)$ (residual symmetry) $\phi^B \rightarrow \langle \phi^B \rangle$ $B \langle \phi^B \rangle = \langle \phi^B \rangle$ $e: C = F_{[3,1]}, A = F_5$ $\nu: C = G_{[3,1]}, A = G_5$ $N: C = G_{[3,1]}, A = G_{[3,1]}$

Charged Leptons

•
$$F_{[3,1]} = \begin{bmatrix} \omega & 0 & 0 \\ 0 & \omega^2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 $F_5 = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$
• $M^e = \begin{bmatrix} x\omega & x\omega^2 & x \\ y\omega^2 & y\omega & y \\ z & z & z \end{bmatrix}$
• $V^{\dagger}F_5V = \begin{bmatrix} \omega^2 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & 1 \end{bmatrix}$
• $V^{\dagger}\overline{M}^eV = 3\begin{bmatrix} |y|^2 & 0 & 0 \\ 0 & |x|^2 & 0 \\ 0 & 0 & |z|^2 \end{bmatrix}$

Neutrino (Group Theory)

•
$$M^{\nu} = \begin{bmatrix} \alpha & \beta & \gamma \\ -\beta\eta^2 & -\alpha\eta^3 & -\gamma \\ \delta & \delta\eta^3 & \epsilon \end{bmatrix}$$

• $(M^N)^{-1} = \begin{bmatrix} A & B & C\eta^2 \\ B & A\eta & C \\ C\eta^2 & C & D \end{bmatrix}$
• $\overline{M}^{\nu} = \begin{bmatrix} a & b & c \\ b & a\eta & c\eta^3 \\ c & c\eta^3 & f \end{bmatrix}$

(Dynamical Theory) $\nu \sim 5$, $N \sim [3, 1]$

Neutrino (Group Theory)

•
$$M^{\nu} = \begin{bmatrix} \alpha & \beta & \gamma \\ -\beta\eta^2 & -\alpha\eta^3 & -\gamma \\ \delta & \delta\eta^3 & \epsilon \end{bmatrix}$$

• $(M^N)^{-1} = \begin{bmatrix} A & B & C\eta^2 \\ B & A\eta & C \\ C\eta^2 & C & D \end{bmatrix}$
• $\overline{M}^{\nu} = \begin{bmatrix} a & b & c \\ b & a\eta & c\eta^3 \\ c & c\eta^3 & f \end{bmatrix}$
• $u'_3 := \frac{1}{\sqrt{2}} \begin{bmatrix} -\eta^3 \\ 1 \\ 0 \end{bmatrix}, \quad \overline{M}^{\nu} u'_3 = m_3 u'_3^* m_3 = a\eta - b\eta^3$
• $|u_3| = |V^{\dagger} u'_3| = \begin{bmatrix} .179 \\ .607 \end{bmatrix}$

$$u_{3}| = |V^{\dagger}u'_{3}| = \begin{bmatrix} .179 \\ .607 \\ .777 \end{bmatrix}$$
$$\sin^{2} 2\theta_{13} = 0.11$$
$$\sin^{2} 2\theta_{23} = 0.94$$

(Dynamical Theory) $\nu \sim 5$, $N \sim [3, 1]$

Neutrino (Group Theory)
•
$$M^{\nu} = \begin{bmatrix} \alpha & \beta & \gamma \\ -\beta\eta^2 & -\alpha\eta^3 & -\gamma \\ \delta & \delta\eta^3 & \epsilon \end{bmatrix}$$

• $(M^N)^{-1} = \begin{bmatrix} A & B & C\eta^2 \\ B & A\eta & C \\ C\eta^2 & C & D \end{bmatrix}$
• $\overline{M}^{\nu} = \begin{bmatrix} a & b & c \\ b & a\eta & c\eta^3 \\ c & c\eta^3 & f \end{bmatrix}$
• $u'_3 := \frac{1}{\sqrt{2}} \begin{bmatrix} -\eta^3 \\ 1 \\ 0 \end{bmatrix}, \quad \overline{M}^{\nu}u'_3 = m_3u'_3^*$
• $|u_3| = |V^{\dagger}u'_3| = \begin{bmatrix} .179 \\ .607 \\ .777 \end{bmatrix}$
 $\sin^2 2\theta_{13} = 0.11$
 $\sin^2 2\theta_{23} = 0.94$

(Dynamical Theory) $\nu \sim 5$, $N \sim [3, 1]$

•
$$M^{\nu} = \begin{bmatrix} \alpha & \beta & 0 \\ -\beta \eta^2 & -\alpha \eta^3 & 0 \\ \delta & \delta \eta^3 & 0 \end{bmatrix}$$

•
$$(M^N)^{-1} = \begin{bmatrix} 0 & B & 0 \\ B & 0 & 0 \\ 0 & 0 & D \end{bmatrix}$$

•
$$\overline{M}^{\nu} = \begin{bmatrix} a & b & 0 \\ b & a\eta & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Neutrino (Group Theory)
•
$$M^{\nu} = \begin{bmatrix} \alpha & \beta & \gamma \\ -\beta\eta^2 & -\alpha\eta^3 & -\gamma \\ \delta & \delta\eta^3 & \epsilon \end{bmatrix}$$

• $(M^N)^{-1} = \begin{bmatrix} A & B & C\eta^2 \\ B & A\eta & C \\ C\eta^2 & C & D \end{bmatrix}$
• $\overline{M}^{\nu} = \begin{bmatrix} a & b & c \\ b & a\eta & c\eta^3 \\ c & c\eta^3 & f \end{bmatrix}$
• $u'_3 := \frac{1}{\sqrt{2}} \begin{bmatrix} -\eta^3 \\ 1 \\ 0 \end{bmatrix}, \quad \overline{M}^{\nu} u'_3 = m_3 u'_3^* m_3 = a\eta - b\eta^3$
• $|u_3| = |V^{\dagger} u'_3| = \begin{bmatrix} .179 \\ .607 \\ .777 \end{bmatrix}$
 $\sin^2 2\theta_{13} = 0.11$
 $\sin^2 2\theta_{23} = 0.94$

(Dynamical Theory) $\nu \sim 5$, $N \sim [3, 1]$

•
$$M^{\nu} = \begin{bmatrix} \alpha & \beta & 0 \\ -\beta\eta^2 & -\alpha\eta^3 & 0 \\ \delta & \delta\eta^3 & 0 \end{bmatrix}$$

• $(M^N)^{-1} = \begin{bmatrix} 0 & B & 0 \\ B & 0 & 0 \\ 0 & 0 & D \end{bmatrix}$
• $\overline{M}^{\nu} = \begin{bmatrix} a & b & 0 \\ b & a\eta & 0 \\ 0 & 0 & 0 \end{bmatrix}$
• $u'_1 := \frac{1}{\sqrt{2}} \begin{bmatrix} \eta^3 \\ 1 \\ 0 \end{bmatrix}, \ u'_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$
 $m_1 = a\eta + b\eta^3, \ m_2 = 0$
• $|u_1| = |V^{\dagger}u'_1| = \begin{bmatrix} .799 \\ .547 \\ .252 \end{bmatrix}$
 $|u_2| = |V^{\dagger}u'_2| = \begin{bmatrix} .577 \\ .577 \\ .577 \end{bmatrix}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Solar Angle and CP Phase

$$|U| = \begin{bmatrix} .799 & .577 & .179 \\ .547 & .577 & .607 \\ .252 & .577 & .777 \end{bmatrix}$$

$$U = \begin{bmatrix} \downarrow & \downarrow & \\ cc' & cs' & se^{-i\delta} \\ -s'c'' - sc's''e^{i\delta} & +c'c'' - ss's''e^{i\delta} & cs'' \leftarrow \\ +s's'' - sc'c''e^{i\delta} & -c's'' - ss'c''e^{i\delta} & cc'' \leftarrow \end{bmatrix}$$
$$s = s_{13}, \ s' = s_{12}, \ s'' = s_{23}$$

 $\sin^2 2\theta_{13} = 0.11, \qquad \sin^2 2\theta_{23} = 0.94, \qquad \sin^2 2\theta_{12} = 0.90, \qquad \delta = 0$

3

3 × < 3 ×

= 990

Experiment

		Theory	$089 \pm .010 \pm .005 \mid .109 \pm .030 \pm .025$
Group	$\sin^2 2\theta_{12}$	0.11	$\113 \pm .013 \pm .019^{'} ~.104 \pm .060/.045$
Theory	$\sin^2 2\theta_{23}$	0.94	$\$
Dynamical	$\sin^2 2\theta_{12}$	0.90	$.95\pm.10\pm.01$
Theory	δ	0	?
(tree)	<i>m</i> ₂	0	$ \begin{array}{c} (\Delta m)^2_{23} = 2.32 \times 10^{-5} \mathrm{eV}^2 \\ (\Delta m)^2_{12} = 7.59 \times 10^{-5} \mathrm{eV}^2 \end{array} $

・ 同 ト ・ ヨ ト ・ ヨ ト

-				
F XI	ne	rın	ner	۱t.
	-			••

		Theory	$\boxed{089 \pm .010 \pm .005 \mid .109 \pm .030 \pm .025}$
Group	$\sin^2 2\theta_{12}$	0.11	$\113 \pm .013 \pm .019 .104 \pm .060 / .045 _$
Theory	$\sin^2 2\theta_{23}$	0.94	$\96 \pm .04 \mid .97 \pm .03 / .08$
Dynamical	$\sin^2 2\theta_{12}$	0.90	$.95\pm.10\pm.01$
Theory	δ	0	?
(tree)	<i>m</i> ₂	0	$ \begin{array}{c} (\Delta m)_{23}^{2} = 2.32 \times 10^{-3} \text{eV}^{2} \\ (\Delta m)_{12}^{2} = 7.59 \times 10^{-5} \text{eV}^{2} \end{array} $

- Theoretical predictions contain no adjustable parameters
- Mixing Parameters: good approximation to reality
- Neutrino Masses: $m_2 = 0 \Rightarrow m_1 = 0$, fair approximation as

$$(\Delta m_{12})^2 \ll (\Delta m_{23})^2$$

Lam

• Tree theory gives a reasonable prediction, though a small higher order correction is needed for accuracy

伺い イラト イラト