

Future Long Baseline Neutrino Experiment in Japan

Akira Konaka (TRIUMF)

November, 2012

Neutrinos and New Physics Work shop @ TRIUMF

Akira Konaka

1

Contents

- Introduction of T2K and HyperK experiments
- Motivation of future long baseline neutrino exp'ts
 What sensitivities do we aim at?
- T2K/HyperK: Physics reaches
 - -Accelerator based long baseline experiment
 - -Atmospheric neutrinos (very long baseline)
 - -Proton decay search
- Disclaimer
 - -Official future T2K sensitivity is still in preparation
 - -"Potential improvements" are my own thougths

θ_{13} is non-zero!

- 2012: non-zero θ_{13} established
 - -Reactor \overline{v}_e disappearance exp'ts: 8σ discovery
 - -T2K: 11 evts \rightarrow 3.2 σ evidence in v_e appearance mode

Future of T2K and SK

Super-Kamiokande

- Long baseline neutrino oscillation experiment from Tokai to Kamioka.
- $v_{\mu} \rightarrow v_e$ appearance to measure θ_{13} , which leads to CP violation studies.

Approach of the T2K experiment

- Narrow band beam tuned at the oscillation maximum
 - -Off-axis v beam (2.5 deg.)
 - -Maximize v oscillation
- Sub-GeV v beam (0.5–1GeV)
 - -CCQE($v_{\mu}n \rightarrow \mu p$) dominates E_{ν} reconst. by μ momentum $E_{\nu} = \frac{2E_{l}m_{N} - m_{l}^{2}}{2(m_{N} - E_{l} + P_{l}cos\theta_{l})}$
 - -Works well for water Cerenkov (Super-K)

J-PARC beam status

- Earthquake Recovery
- -In less than a year
- -190kW operation in 2012
 - •145kW before earthquake
 - exceed post-earthquake plan
- Plan towards full 750kW
 - -Collimator upgrade
 - -Linac upgrade
 - -Main ring RF upgrade

The medium-term plan of the MR-FX until 2017

We adopt the high repetition rate scheme to achieve the design beam intensity, 750 kW. Rep. rate will be increased from \sim 0.4 Hz to \sim 1 Hz by replacing magnet PS's and RF cavities.

JFY	2011	2012	2013	2014	2015	2016	2017
			Li. upgrade				
FX power [kW]	150	200	300	400			750
Cycle time of main magnet PS New magnet PS for high rep.	3.04 s	2.56 s R&D	2.4 s	i l	/lanufact nstallatio	ure n/test	1.3 s
Present RF system New high gradient rf system	Install. #7,8	Install. #9	.D		Manufac Installatio	ture on/test	•
Ring collimators	Additional shields	Add.collimators and shields (2kW)	Add.collimators (3.5kW)				
Injection system FX system	New injection kicker	Kicker PS improven	nent, Septum 2 manufac HF septa manufacture /	cture /test 'test			

T.Koseki@HyperK meeting

Potential MW upgrade of J-PARC

For the MR, scenarios for Multi-MW output beam power for neutrino experiment are being discussed .

T.Koseki@HyperK meeting

1. Large aperture MR

Enlarging the physical aperture from 81 to > 120 π mm.mrad A new synchrotron in the MR tunnel

Second booster ring for MR (emittance damping ring)
 A ring with extraction energy ~ 8 GeV, between the RCS and the MR

- 3. New rapid cycling synchrotron using 3 GeV RCS beam
 - as a proton driver for neutrino beam production
 - as an injector of MR, which is exclusively operated for the SX users
- 4. New rapid cycling synchrotron using the upgraded ~1 GeV linac beam
 - as a proton driver for neutrino beam production
 - as an injector of MR, which is exclusively operated for the SX users

The detailed scheme of the future MW proton driver is discussed in the next five years and prepare to submit budget proposal to the government in 2018 or later.

J-PARC upgrade status

- Effort to achieve 750kW is on going
 - -R&D to double the repetition rate has started:
 - high gradient RF
 - magnet power supply for high repetition rate
 - -R&D to double the #protons/bunch to be done
- Scenario to go beyond 750kW beam power is being discussed, but no concrete scenario or timeline yet.

Hyper-Kamiokande project

Comparison with SuperK

	Hyper-K	Super-K
Total volume	990kton	50kton
inner volume	740kton	32kton
fiducial volume	560kton	22.5kton
PMT's (20-inch)	99,000	11,146
photocathode coverage	20%	40%
Overburden (water eq.)	1,750m	2,700m
Off-axis angle	2.5 degree	2.5 degree
Baseline	295km	295km

• 25 times larger fiducial volume than SuperK

Schedule

assuming budget being approved from JPY2016

Construction start

PMNS texture

- Large mixing angles:
 - -Indicating different origin for leptons from quarks
 - -Lead us to understand the origin of family? GUT?
- Textures
 - -Anarchy: random
 - -Bi-maximal: $\theta_{12}=\theta_{13}=45^{\circ}$
 - -Tri-bimaximal: fits the data reasonably well

$$\begin{aligned} \sin^2 \theta_{12} &= \frac{1}{3} \\ \sin^2 \theta_{23} &= \frac{1}{2} \\ \sin^2 \theta_{13} &= 0 \end{aligned} |\nu_3\rangle &= \frac{1}{\sqrt{2}}(-|\nu_{\mu}\rangle + |\nu_{\tau}\rangle) \\ |\nu_2\rangle &= \frac{1}{\sqrt{3}}(|\nu_e\rangle + |\nu_{\mu}\rangle + |\nu_{\tau}\rangle) \\ |\nu_1\rangle &= \frac{1}{\sqrt{6}}(2|\nu_e\rangle - |\nu_{\mu}\rangle - |\nu_{\tau}\rangle) \end{aligned}$$

Follow the History of CKM?

- Cabbibo quark mixing: $\lambda = cos\theta_c = 0.224$
- GIM mechanism: unitarity \rightarrow no FCNC, predict charm
- Kobayashi-Maskawa: δcp, predict 3 families (t, b)
- Precision studies (Wolfenstein parametrization)

 $V = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$ CKM expanded by λ $\lambda = 0.2243 \pm 0.0016$ A = 0.82 $\rho = 0.20, \eta = 0.33$

- Tri-bimaximal in lepton mixing? Expand in sin θ_{13} ?
- Precision down to $\sin^2\theta_{13}$ =0.024 (~2%) level.
- Discovery of the underlying principle? GUT?

Global fit (2012)

Global fit results are getting very interesting:
 -consistent with tri-bimaximal but some hints
 -sin²θ₁₃>0, sin²θ₂₃<¹/₂?, sin²θ₁₂<¹/₃?, δcp?

parameter	best fit	1σ range	2σ range	3σ range	tri-bimaximal
sin²θ ₁₂ (NH/IH)	0.307	0.291-0.325	0.275-0.342	0.259-0.359	0.333
sin²θ ₁₃ (NH)	0.0241	0.0216-0.0266	0.0193-0.0290	0.0169-0.0313	0.0
sin²θ ₁₃ (IH)	0.0244	0.0219-0.0267	0.0194-0.0291	0.0171-0.0315	0.0
sin²θ ₂₃ (NH)	0.386	0.365-0.410	0.348-0.448	0.331-0.637	0.5
sin²θ₂₃ (IH)	0.392	0.370-0.431	0.353-0.641	0.335-0.663	0.5
δ(NH)	1.08π	(0.77-1.36)π	-	-	-
δ(IH)	1.09π	(0.83-1.47)π	-	-	-

Fogli et. al. ArXiv:1205.5254v3

Future precision measurements

- θ_{12} : solar neutrinos
 - - θ_{12} :SNO (CC and NC solar), Δm^2_{12} : Kamland (reactor)
 - -Future: Daya Bay2 (60km detector), pp/pep solar v's
- θ_{13} : Reactor neutrinos
 - -Improvements expected by Daya Bay and others.
- θ_{23} : Long baseline neutrinos
- δcp: Long baseline neutrinos
- Degeneracy: mass hierarchy, θ_{23} octant

-Very long baseline (accelerator, atm. neutrinos)

θ_{23}

T2K V_{μ} disappearance

Backgrounds

- Main backgrounds at the dip:
 - -CC1π
 - -NC1π
 - -CCQE resolution tail

19

Systematics in V_{μ} disap.

- Run1-3 (-2012): x2 stat.
- Run1-4 (-2014): x4 stat.
- Systematcs started to ir
 - $-NC\pi$, $CC1\pi$ (CCnonQE), $\Box \pi$ detection is the k

-	SuperK CCQE efficiency (ring-counting)	$\pm 3.23\%$
-	SuperK CCQE efficiency (other)	±1.04%
	SuperK CCnonQE efficiency	$\pm 6.51\%$
*	SuperK NC efficiency	$\pm 6.96\%$
0.95 1.00	SuperK ν_e CC efficiency	$\pm 0.05\%$
	ND280 efficiency	+5.59% -5.30%
	ND280 normalization	$\pm 2.62\%$
	Flux normalization	±4.73%
	CCQE cross section	±2.36%
expected	CC1pi/CCQE cross section ratio	+0.52% -0.59%
	CCother/CCQE cross section ratio	+4.10% -3.67%
праст	NC/CCQE cross section ratio	+0.82% -0.84%
FSI	FSI	$\pm 5.80\%$
ley	Total	+14.79% -14.61%
ne Nutrino Experiment	Akira Konaka (TRIUMF) 20	0

Error source

 $\delta N_{SK}^{exp} / N_{SK}^{exp}$

-14.61%

Neutrino cross section

- CCQE cross section shows enhancement at ~GeV
 - -Multi-nucleon process: 20-30% contributions?
 - -Reconstructed neutrino energy is not correct:
 - It assumes 2 body react. with proton recoil
 - -Neutrino reaction model need to be developed!

CCQE model

Nieves NuInt2012

Model with 2p2h and RPA fits MiniBooNE CCQE data well when data is scaled by 0.89 (within MiniBooNE error)

$CC1\pi$ consistent with no FSI?

New SK Reconstion code

- Current SK reconstruction code (APFIT)
 - -Originally written for Kamiokande experiment.
 - -Works well with detailed check with data.
 - -Limitation in the design for limited CPU power.
- New SK reconstruction code (fitQun) M.Wilking et. al.
 - -Likelihood fit of all the PMT charge and timing
 - taking advantage of all available information
 - simultaneous fit of vertex and particle kinematics
 - based on the method that worked well for MiniBooNE
 - -To be used for Hyper-K event reconstruction, too.

Single ring with FitQun M.Wiliking@HyperK meeting

Single Track Particle ID

True Momentum [MeV/c]

- Simple line cut can be used to separate muons and electrons
- Significantly improved particle ID

π⁺ Fitter

- Pions and muons propagate and produce Cherenkov light in a very similar manner (similar masses)
- The main difference is due to hadronic interactions
- Ring pattern observed is a "kinked" pion trajectory
- This is the first demonstration of pion/muon separation at SK (in MC)

• Allows for $CC\pi^+ E_v$ reconstruction 449120 + 180

muon tracks pion tracks

Kinked-track π^+ Fitter

2012 November

Potential improvements

- Background suppression & measurement (fitQun) – v_{μ} disappearance (θ_{23}): NC π^+ ,CC π^+
- Reduction of systematic uncertainties
 - -Background suppression & measurement
 - -Cross section modeling and measurements
- Statistics to improve:
 - -T2K: runs with continuously increasing intensity
 - -Hyper-K: 25 time more fiducial volume

θ_{13} and CP

V_e Appearance probability

T2K Ve appearance

CP violation @ HyperK

33

CPV Discovery Sensitivity

(w/ Mass Hierarchy known)

High Sensitivity to CPV w/ <~5% sys. error

T2K Signal & Background for ν_e appearance

- Signal = single electron event
 - oscillated v_e interaction :

 $CCQE: v_e + n \rightarrow e + p$ (dominant process at T2K beam energy)

- Background
 - intrinsic ν_e in the beam (from $\mu,$ K decays)
 - π^0 from NC interaction

K.Sakashita@ICEHP

Background suppression

• New reconstruction code suppress NC π^0 background in V_e appearance to ~1/3

M.Wilking @HyperK meeting

- Also effective to suppress $CC\pi^+$ in ν_μ disappearance

Event category	$\sin^2 2\theta_{13} = 0.0$	$\sin^2 2\theta_{13} = 0.1$
Total	$3.22 {\pm} 0.43$	10.71 ± 1.10
ν_e signal	0.18	7.79
ν_e background	1.67	1.56
$ u_{\mu}{ m background}$ (mainly N	ICπº) 1.21	1.21
$\overline{\nu}_{\mu} + \overline{\nu}_{e}$ background	0.16	0.16

fitQun π^0 fitter

37

Potential improvements

- Background suppression & measurement (fitQun) –ve appearance (θ_{13} , δ_{Cp}): NC π^{0} [down to <30%]
- Reduction of systematic uncertainties
 - -Background suppression & measurement
 - -Cross section modeling and measurements
- Statistics to improve:
 - -T2K: runs with continuously increasing intensity
 - -Hyper-K: 25 time more fiducial volume

Atmospheric neutrino

mass hierarchy $\theta_{23} < 45^{\circ}$ or $\theta_{23} > 45^{\circ}$

Atmospheric neutrino

$$\frac{\Phi(\nu_e)}{\Phi_0(\nu_e)} - 1 \approx P_2 \cdot (r \cdot \cos^2 \theta_{23} - 1) \quad \boldsymbol{\theta}_{12} \qquad \text{interference} \quad (\boldsymbol{\delta} \mathbf{cp}) \\ -r \cdot \sin \tilde{\theta}_{13} \cdot \cos^2 \tilde{\theta}_{13} \cdot \sin 2\theta_{23} \cdot (\cos \delta \cdot R_2 - \sin \delta \cdot I_2) \\ + 2\sin^2 \tilde{\theta}_{13} \cdot (r \cdot \sin^2 \theta_{23} - 1) \quad \boldsymbol{\theta}_{13} \text{ resonance}$$

- Resonant oscillation (oscillogram)
 - -Zenith angle dependence
 - 0-33°: core+mantle
 - 33°-75°: mantle
 - $-r=\Phi_{\mu}/\Phi_{e}$
 - r=2.1@1GeV, 2.4@3GeV, 2.6@6GeV
 - cancellation for $sin^2\theta_{23}$ <0.5

40

Resonant $V_{\mu} \rightarrow V_{e}$ oscillation

- $v_{\mu} \rightarrow v_{e}$ resonance
 - -2.5GeV/cos θ_{v} =-0.9

$$-6 \text{GeV/cos}\theta_{v}=-0.8$$

- ³ Resonance depends on
 - $cos\theta_{\nu}$ and E_{ν}
 - multi-GeV, upward
 - $-\nu/\overline{\nu}$, mass hierarchy
 - v for normal hierarcy
 - \overline{v} for inverted hierarcy

atmospheric V_e appearance

 $\cos\theta_v = -0.8$

Sensitive to mass hierarchy, θ_{23} octant, δ_{CP}

Expected Effects : Single-Ring e-like and anti-e-like samples

v_e-like: $CC1\pi^+ \Rightarrow$ with decay electron \overline{v}_e -like $CC1\pi^- \Rightarrow$ without decay electron

R.Wendell (ICRR)

R.Wendel NOW2012

Systematics in Atm. V

In practice, it is difficult to infer —from atmospheric data— clean 3v information beyond the dominant parameters (Δm^2 , θ_{23}). Subdominant oscillation effects are often smeared out over wide energy-angle spectra of events, and <u>can be partly mimicked by systematic effects</u>. For this reason, <u>"hints" coming from current atmospheric data should be taken</u> with a grain of salt, and should be possibly supported by independent datasets. Fogli et. al. ArXiv:1205.5254v3

2012 November

Potential Improvement: atm.v $CC1\pi^{\pm}$

- Eclusive $CC1\pi^{\pm}$ reconst. successfully done @ MiniBooNE -FitQun reconstruction is based on the same method.
- Energy and zenith angle reconstruction
 - –Pion Cerenkov ring before interaction \rightarrow P_{π}
 - -Full reconstruction except for the recoil nucleon:
 - $\Delta E_v \sim 50 \text{MeV} : \Delta E_v / E_v = 50/2500 \sim 2\%$
 - P_T(nucleon)~300MeV/c : $\Delta \theta_{\nu}/\theta_{\nu}$ ~300/2500~12%
- Background suppression: clean measurement
 - -Particle identification
 - v_e : $CC\pi^+$ with decay e , anti- v_e : $CC\pi^-$ without decay e
 - $-NC(\pi^0)$ rejection using fitQun reconstruction
- Spectrum before oscillation given by down-ward going v's

Atmospheric V at Hyper-K

Proton decays

Proton decays

Expand search by another order of magnitude: Getting deep into the remaining GUT window

2012 November

τ/B (years)

$p \rightarrow v K^+$ mode at Hyper-K

Discovery potential (3σ) : 1.0x10³⁴ years Sensitivity (90%C.L.): 2.5x10³⁴ years

with 10 years run (5.6 Mton • yrs)

Nakahata@Lyon

π⁰ mode at Hyper-K

Sensitivity (90%C.L.): 1.3x10³⁵ years

with 10 years run (5.6 Mton•yrs)

1200

1200

Potential improvements

- р→К∨
 - -Improved 6MeV γ tagging efficiency with fitQun
 - detect low energy γ before K decay
 - \bullet good K decay vertex reconstruction to reject fake γ
 - Full reconstruction of $K^+ \rightarrow \pi^+ \pi^0$
- p→eπ⁰
 - -Background rejection
 - better energy/momentum resolution with fitQun
- Gd to veto associated neutrons from atm.v BG?

Summary

- Precision v oscillation measurements provides clues on origin of the flavour (family) structure.
- T2K continue accumulating data with increasing
 v flux and future proposal of Hyper-K prepared.
 - - θ_{23} : long baseline v_{μ} disappearance
 - $-\delta cp$: long baseline v_e appearance
 - -mass hierarchy/ θ_{23} octant: atmospheric v
 - -proton decays: explore GUT

Summary (cont.)

- Controlling systematics is crucial:
 - -Progress in cross section modeling/measurements
 - -New reconstruction code
- New reconstruction code being prepared: fitQun
 - -better reconstruction
 - momentum, vertex, particle identification
 - -background tagging and rejection
 - π^0 for accelerator v_e appearance (to less than 1/3)
 - π^{\pm} for accelerator ν_{μ} disappearance
 - π^{\pm} for atm. ν_e appearance: tag CC1 π^+ and CC1 π^-

Global fit (2012)

global fit

Lepton Unitary Triangle

- Large θ_{13} makes unitary triangle measurement realistic now: explore physics beyond SM
 - -Sterile neutrino (right-handed v) breaks unitarity
 - -4th generation, new interaction, etc.
 - -Two speakers independently pointed out at Neutrino2012

Mass hierarchy

- Matter resonance: atmospheric V -SuperK/HyperK, INO, PINGU, ...
- Long baseline \boldsymbol{v}

-Comparison between short and long baselines • T2K/HK vs. NOvA/LBNE

- Comparison between $\Delta m^2{}_{32}$ and $\Delta m^2{}_{13}$
 - -Reactor Δm_{13}^2 vs. T2K Δm_{32}^2
 - -Daya-Bay2: Reactor $\Delta m^2{}_{13}$ and $\Delta m^2{}_{12}$ at 60km
- Cosmology: Σm_{ν}
- Double β decays

Cosmological V mass

Probe	Current $\sum m_{\nu}$ (eV)	Forecast $\sum m_{\nu}$ (eV)	Key Systematics	Current Surveys	Future Surveys
CMB Primordial	1.3	0.6	Recombination	WMAP, Planck	None
CMB Primordial + Distance	0.58	0.35	Distance measure- ments	WMAP, Planck	None
Lensing of CMB	∞ <	0.2 - 0.05	NG of Secondary anisotropies	Planck, ACT <u>39</u>], SPT <u>96</u>]	EBEX <u>57</u>], ACTPol, SPTPol, POLAR- BEAR <u>5</u>], CMBPol 6
Galaxy Distribution	0.6	0.1	Nonlinearities, Bias	SDSS <u>[58</u> , <u>59</u>], BOSS <u>[82]</u>	DES [84], BigBOSS [81], DESpec [85], LSST [92], Subaru PFS [97], HET- DEX [35]
Lensing of Galaxies	0.6	0.07	Baryons, NL, Photo- metric redshifts	CFHT-LS <u>[23</u>], COS- MOS <u>[50]</u>	DES [84], Hy- per SuprimeCam, LSST [92], Euclid [88], WFIRST[100]
Lyman α	0.2	0.1	Bias, Metals, QSO continuum	SDSS, BOSS, Keck	BigBOSS <u>[81]</u> , TMT[<u>99]</u> , GMT[<u>89]</u>
21 cm	∞ (0.1 - 0.006	Foregrounds, Astro- physical modeling	GBT [11], LOFAR [91], PAPER [53], GMRT [86]	MWA <u>93</u>], SKA <u>95</u>], FFTT <u>49</u>
Galaxy Clusters	0.3	0.1	Mass Function, Mass Calibration	SDSS, SPT, ACT, XMM [101] Chan- dra [83]	DES, eRosita [87], LSST
Core-Collapse Super- novae	∞	$\theta_{13} > 0.001^*$	Emergent ν spectra	SuperK [98], ICECube[90]	Noble Liquids, Gad- zooks [7]

Normal hierarchy: $\Sigma m_v > 0.05 \text{eV}$, Inverted hierarchy: $\Sigma m_v > 0.1 \text{eV}$

Systematic uncertainties

 Cross section uncertainty dominates:

-Precise study of cross section in the near detector is critical!

	$\sin^2 2\theta_{13} = 0.1$	$\sin^2 2\theta_{13} = 0.0$
Flux+Xsec in T2K fit	5.7%	8.7%
Xsec (from other exp.)	7.5%	5.9%
SK + FSI	3.9%	7.7%
Total	10.3%	13.4%

Other Physics by Hyper-K

- Supernova neutrinos
 - -Sensitivity reaches beyond Andromeda Galaxy
 - -Supernova Relic Neutrino detection
- Solar neutrinos
 - -Day-Night asymmetry measurement
- Indirect WIMP search (solar, galactic)
 Reaching interesting region in SD interaction
- Others

-GRB-v, solar flare v, n-nbar oscil., monopole, Q-ball,...

Supernova neutrinos

- Expect 30–50 v events even from Andromeda galaxy
 - -Every 10-20 years instead of 30-50 years from our galaxy
- Sensitivity reaches to detect supernova relic neutrinos

Indirect WIMP search

 Indirect WIMP search reaching predicted region for spin dependent interaction

Open Meeting for the Hyper-Kamiokande Project

21-23 August 2012 Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU), The University of Tokyo

Overview

Important Dates

Call for Abstracts

- View my abstracts
- Submit a new abstract

Timetable

Contribution List

Registration

Registration Form

Access

Accommodation

Overview

We will hold an International Open Working Group Meeting for the Hyper-Kamiokande project. Hyper-K, which we are currently developing, is designed to be the next decade's flagship experiment for the study of neutrino oscillations, nucleon decays, and astrophysical neutrinos.

The goal of this meeting is to discuss the physics potentials of Hyper-K, the design of the detector, and necessary R&D items including:

- cavern excavation
- tank liner material and its design
- photo-sensors and their support structure
- DAQ electronics and computers
- calibration systems
- water purification systems
- software development, and so on.

Aug.21-23,2012 @ Kavli-IPMU: http://indico.ipmu.jp/indico/conferenceDisplay.py?confId=7

2012 November