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A bit of history of neutrino oscillations

Uncertainty relations and neutrino oscillations

The seesaw mechanism and neutrinoless double β-decay



Soon after the discovery of the violation of parity and C in the
weak interaction Landau, Lee and Yang and Salam proposed

the theory of the two-component neutrino (1957)
For massless neutrino νL(x) and νR(x) satisfy two decoupled

equations

iγα ∂α νL(x) = 0 iγα ∂α νR(x) = 0

Basic assumptions made by Landau, Lee and Yang and Salam

1. Neutrino is massless particle

2. Neutrino field is νL(x) or νR(x)

Under inversion

ν ′L(R)(x ′) = ηγ0νR(L)(x)

If neutrino field is νL(x) or νR(x)
maximal violation of parity (in agreement with experimental data)



Important consequence of the theory
For massless neutrino

γ5 ur (p) = r ur (p),
1∓ γ5

2
ur (p) =

1∓ r

2
ur (p)

If neutrino field is νL(x) (νR(x)), neutrino is a particle with helicity
equal to -1 (+1)

Neutrino helicity was determined in spectacular Goldhaber et al
experiment (1958) from the measurement of the circular

polarization of γ’s produced in the chain of reactions

e− +152 Eu→ ν + 152Sm∗

↓
152Sm + γ.

The authors concluded ”... our result is compatible with 100%
negative helicity of neutrino emitted in orbital electron capture”

After this experiment during many years there was a general belief
that the neutrino is a two-component massless particle



For the first time this opinion was challenged by B. Pontecorvo in
1957-58. He assumed that neutrinos have small masses, they are

mixed and neutrino oscillations are possible
Pontecorvo believed in analogy between weak interaction of
hadrons and leptons and looked for analogy of the famous

K 0 − K̄ 0 oscillations in the lepton world. In such a way he came to
an idea of neutrino oscillations

K 0 (K̄ 0) is a particle with S = 1 ( S = −1)
They are produced in strong processes like π− + p → K 0 + Λ etc.

|K 0〉 (|K̄ 0〉) states in the rest frame, |K̄ 0〉 = CP |K 0〉
Weak interaction does not conserve S. Eigenstates of the total

Hamiltonian are superpositions of |K 0〉 and |K̄ 0〉. We neglect small
effects of the violation of CP

|K 0
1 〉 =

1√
2

(|K 0〉+ |K̄ 0〉), |K 0
2 〉 =

1√
2

(|K 0〉 − |K̄ 0〉

are eigenstates of the total H with masses m1,2 and total widths
Γ1,2.



|K 0〉 =
1√
2

(|K 0
1 〉+ |K 0

2 〉), |K̄ 0〉 =
1√
2

(|K 0
1 〉 − |K 0

2 〉)

mK ' 497.61 MeV and mass difference ∆m = m2 −m1 is
extremely small ∆m ' 3.48 · 10−12 MeV

Impossible to distinguish production (detection) of K 0
1 and K 0

2 in
hadronic processes. Coherent superpositions are produced

(detected)
If at τ = 0 K 0 is produced at the proper time τ we have

|K 0〉τ =
1√
2

(e−iλ1τ |K 0
1 〉+ e−iλ22 |K 0

2 〉) = g+(τ)|K 0〉+ g−(τ)|K̄ 0〉

g±(τ) =
1

2
(e−iλ1τ ± e−iλ2τ ) λ1,2 = m1,2 − i

Γ1,2

2

Because of coherence |K 0〉τ is a superposition of |K 0〉 and
|K̄ 0〉.P(K 0 → K̄ 0) = |g−|2 is the transition probability



I. Coherent superpositions of eigenstates of the total H with very
small mass difference are produced in the strong interaction.

II. States with definite masses are evolved in time according to
the Schrodinger equation.

This formalism was perfectly confirmed not only for K 0 − K̄ 0 but
also for B0

d − B̄0
d etc

In 1958 only one type of neutrino was known. B. Pontecorvo
assumed that in addition to ν̄R produced in weak decays exist also

sterile νR . By analogy with K 0 − K̄ 0 he assumed that

|ν̄R〉 =
1√
2

(|ν1〉+ |ν2〉), |νR〉 =
1√
2

(|ν1〉 − |ν2〉)

|ν1,2〉 are states of Majorana neutrinos ν1,2 with small masses m1,2

and momentum p
If at the time t ν̄R (ν̄e) was produced we have

|ν̄R〉t =
1√
2

(e−iE1t |ν1〉+ e−iE2t |ν2〉) =
1

2
(g+(t)|ν̄R〉+ g−(t)|νR〉)

g±(t) = (e−iE1t ± e−iE2t), Ei =
√
p2 + m2

i ' p +
m2

i

2p



Survival probability

P(ν̄e → ν̄e) = 1− 1

2
(1− cos

∆m2L

2E
)

L ' t, ∆m2 = m2
2 −m1

2

The probability depends periodically on L
E (neutrino oscillations)

If ∆m2L
2E � 1 no effects. If ∆m2L

2E � 1 cosine term will be averaged
and 1

2 suppression will be observed B. Pontecorvo in 1958 proposed
to measure the flux of the reactor antineutrinos at different

distances from a reactor.
Later in 1962 MNS considered νe and νµ as mixtures of neutrinos
ν1 and ν2 with masses m1 and m2. They mentioned a possibility of

”virtual transmutation” νµ → νe



NEUTRINO OSCILLATIONS TODAY
Basics

1. Exist three flavor neutrinos νe , νµ, ντ

2. The Standard Model CC and NC lepton interaction

LCCI (x) = − g

2
√

2
jCC
α (x)W α(x) + h.c.

jCC
α (x) = 2

∑
l=e,µ,τ

ν̄lL(x) γα lL(x)

3. νeL(x), νµL(x), ντL(x) are ”flavor mixed fields”

νlL(x) =
3∑

i=1

Uli νiL(x)

νi (x) is the field of neutrino (Dirac or Majorana) with mass
mi and U is 3× 3 unitary PMNS mixing matrix



Usually it is assumed that in weak processes flavor neutrinos
νe , νµ, ντ which are described by coherent states

|νl〉 =
3∑

i=1

U∗li |νi 〉

(|νi 〉 is the state of the left-handed neutrino with mass mi and
momentum p) are produced

Let us consider in (lab. system) a decay

a→ b + l+ + νi

a and b are some hadrons. Initial and final particles have definite
momenta.

State of the final particles

|f 〉 =
∑

i

|l+〉|νi 〉|b 〉〈l+νib|S |a〉

If neutrino masses are equal pi = p Thus, we have pi ' p + a
m2

i
2E p

is the momentum of the lightest neutrino, a is a constant of the
order of one



|∆pik | − |pk − pi | = |a|
|∆m2

ik |
2E

=
2π

Losc
ik

Losc
ik is the oscillation length

From the Heisenberg uncertainty relation

(∆p)QM '
1

d

d is QM microscopic size of a source
For the atmospheric neutrinos Losc

23 ' 1000 km, for reactor
neutrinos Losc

12 ' 100 km
|∆pik | � (∆p)QM We can not distinguish production of neutrinos

with different masses for neutrinos with energies relevant for
neutrino oscillation experiments

m2
i

E 2 ≤ 10−12 neutrino masses can be safely neglected in the matrix
element

〈l+νib|S |a〉 ' U∗li 〈l+νlb|S |a〉SM



〈l+νlb|S |a〉SM is the SM matrix element of the process
a→ b + l+ + νl

For the final state we find

|f 〉 = |l+〉|νl〉|b 〉〈l+νlb|S |a〉SM

|νl〉 =
3∑

i=1

U∗li |νi 〉

|νi 〉 is the state of neutrino with mass mi and momentum p
Together with l+ flavor neutrino νl (analog of K 0, K̄ 0), which is
described by the mixed coherent state |νl〉, is produced in a weak

decay

1. The flavor state does not depend on the production process

2. In neutrino production and detection processes neutrino mass
differences can be neglected. Flavor lepton numbers Le , Lµ, Lτ
are effectively conserved



EVOLUTION OF THE FLAVOR NEUTRINO STATES
Evolution equation for states in QFT is the Schrodinger equation
If at t = 0 flavor neutrino νl was produced at the time t we have

|νl〉t = e−iH0t
∑

i

|νi 〉 U∗li =
∑

i

|νi 〉e−iEi t U∗li

Thus, at the time t the neutrino state is a superposition of states
with different energies (nonstationary state)

Neutrinos are detected via observation of weak processes. We have

|νl〉t =
∑

l ′

|νl ′〉(
∑

i

Ul1i e
−iEi t U∗li )

The probability of νl → νl ′ transition is given

P(νl → νl ′) = |
∑

i

Ul1i e
−i(Ei−Ep)t U∗li |2

p is fixed index (common phase)
Transitions are due to coherence(mixing) and phase differences



(Ei − Ep)t '
∆m2

piL

2E
L is source-detector distance
The transition take place if

|Ei − Ep| t ≥ 1

This is time-energy uncertainty relation
It was shown by Mandelstam and Tamm that in any quantum

theory

∆E ∆t ≥ 1

The time-energy uncertainty relation is a consequence of

i
∂O(t)

∂t
= [O(t),H]

(O(t) is an Heisenberg operator and H is the total Hamiltonian)
and Couchy inequality. ∆t is time interval during which state of
the system is significantly changed, ∆E is uncertainty in energy



In many papers evolution in space and time is considered Neutrino
state at the point x − (xo ,~x)

|νl〉x = e−iPx |νl〉0 =
∑

i

e−ipi xU∗li |νi 〉 =
∑

l ′

|νl ′〉

(∑
i

Ul ′ie
−ipi xU∗li

)
Evolution operator e−iPx , P is the operator of the total

momentum
Transition probability

P(νl → νl ′) = |
∑

i

Ul ′ie
−i(Ei t−pi L)U∗li |2

For the ultrarelativistic neutrino t ' L
Compare two approaches

I (t). The flavor neutrino state with definite momentum is

produced osc. phase: Ei t ' (p +
m2

i
2E )L

II(x). Different energies and momenta . Osc. phase:

(Ei t − piL) ' (Ei − pi )L '
m2

i
2E L

Common phase factor e−pL can not be observed There is no way to
distinguish two approaches in usual neutrino oscillation experiments



Comments to space-time approach

1. e−iPx is not operator of the evolution of states. It determines
the evolution of operators in QFT O(x) = e iPxO(0)e−iPx

2. States of neutrino with definite momentum can not depend on
x (be localized) |νi 〉 = c†(pi )|0〉

∑
i

U∗li e
i(~pi~x−Ei t)

can be considered as a superpositions of solutions of the Dirac
equation. In this QM approach

P(νl → νl ′) = |
∑

i

Ul ′ie
i(pi L−Ei T ) U∗li |2

piL− Ei t is the change of the phase of the plane wave which
describes νi at the distance L after the time t



Different approaches can be distinguished if special Mossbauer
neutrino experiment will be done

3H �3 He(atom) + ν̄e

3H and 3He in lattice
Monochromatic antineutrinos with energy 18.6 KeV are produced

and detected
resonance cross section σR = 5 · 10−32 cm2

Estimated energy uncertainty of ν̄e is ∆E ' 8.6 · 10−12 eV

Much smaller than E3 − E2 '
∆m2

23
2E ' 6.7 · 10−8 eV

Thus, in such an experiment Ei ' E
In the case of the approach based on the Schrodinger evolution
equation oscillations will not take place (in accordance with the

time-energy uncertainty relation)
In the case of the space-time approach oscillations will take place
due to different neutrino momenta (the time-energy uncertainty

relation is not satisfied in this case)



Seesaw mechanism and 0νββ-decay
Why discovery of neutrino oscillations is a signature of a beyond

the SM physics?
Main reason: neutrino masses are much smaller than masses of

leptons and quarks
For example, for the third generation

mt ' 173.5 · 102 GeV, mb ' 4.65 GeV

m3 ≤ 2.3 10−9 GeV, mτ ' 1.77 GeV

It is very unlikely that neutrino masses are of the same SM origin
as masses of the leptons and quarks

Different mechanisms of small neutrino mass generation were
proposed. The most plausible (popular) is the seesaw mechanism



The most general realization of the seesaw idea is based on the
effective Lagrangian approach (Weinberg).

Basic assumptions

1. In SM neutrino are massless particles

2. Neutrino masses and mixing are generated by a beyond the
SM interaction

Taking into account effective interactions generated by a beyond
the SM physics we have

L(x) = LSM(x) +
∑
n≥1

1

Λn
L4+n(x)

LSM(x) is the SM Lagrangian; the second term is the effective
nonrenormalizable Lagrangian. Λ has dimension of mass and

characterizes a scale of a new physics. The operator L4+n(x) has
dimension M4+n. It is built from the SM fields and satisfies

SU(2)× U(1) invariance of the SM



We are interested in the generation of a neutrino mass term
Neutrino fields νlL enters into the lepton doublets

LlL =

(
νlL

lL

)
l = e, µ, τ

(L̄lLH̃) is SU(2)× U(1) invariant which has the lowest dimension
(M5/2)

Here H̃ = iτ2H
∗, H is the Higgs doublet

In order to built a Lorenz-scalar, quadratic in neutrino fields, we
need to use (right-handed) conjugated doublets (LlL)c = CL̄T

lL

We come to the following dimension five, invariant Lagrangian

Leff
5 =

1

Λ

∑
l ′,l

L̄l ′LH̃Yl ′l H̃
T (LlL)c + h.c.

Here Yl ′l = Yll ′ are dimensionless constant. Leff is the only
dimension 5 effective Lagrangian which can be build from the SM

fields



Let us stress that

1. The Lagrangian Leff
5 violate L

2. It can be build only if Higgs particle exists
3. Λ characterizes scale of a new physics which violate L

After the spontaneous violation of the symmetry

H̃ =

(
0

v+h√
2

)
, v = (

√
2GF )−1/2 ' 246 GeV

we come to the Majorana mass term

LM = −1

2

∑
l ′l

ν̄l ′LMl ′l (νlL)c + h.c.

Here Ml ′l = v2

Λ Yl ′l

After the standard diagonalization of the symmetrical matrix M
(M = UmUT )

LM = −1

2

3∑
i=1

mi ν̄iνi

νi = νc
i = C ν̄T

i is the field of neutrino Majorana with mass mi



Majorana neutrino mixing

νlL =
3∑

i=1

UliνiL

Neutrino mass

mi = yiv
v

Λ

yiv is of the order of the SM mass
v
Λ = SM scale

scale of a new physics is the suppression factor. Assuming

yi ' 1, Λ ' 1015 GeV
Summarizing, if neutrino masses are of the standard seesaw origin

1. Neutrino masses are small (if Λ� v )

2. Neutrinos νi are Majorana particles.

3. The number of neutrinos νi is equal to the number of flavor
neutrinos (three).



Nature of neutrinos with definite masses can be revealed via
investigation of 0νββ-decay

If 0νββ-decay will be observed, can we check that only three
Majorana neutrino masses contribute?

The lepton part of the process is determined∑
i

1− γ5

2
Uei

γ · p + mi

p2 −m2
i

Uei
1− γ5

2
' mββ

1− γ5

2

1

p2

mββ =
∑

i

U2
eimi

is the effective Majorana mass We took into account p2 � m2
i .

The nuclear matrix elements do not depend on mi . Half-life of the
0νββ-decay

1

T 0 ν
1/2(A,Z )

= |mββ |2 |M(A,Z )|2 G 0 ν(E0,Z )

M(A,Z ) is NME, G 0 ν(E0,Z ) is a known phase-space factor
Calculation of NME is a challenging nuclear problem. 5 different

methods are used at present



Figure: NME in different models



Transition M(A,Z )
ISM QRPA IBM-2 PHFB EDF

48Ca→ 48Ti 0.61 1.91
76Ge → 72Se 2.30 4.92 5.47 3.70
82Se → 82Kr 2.18 4.39 4.41 3.39
96Zr → 96Mo 1.22 2.78 4.54
100Mo → 100Ru 3.64 3.73 6.55 4.08
116Cd → 116Sn 2.99 3.80
124Sn→ 124Te 2.10 3.87
128Te → 128Xe 2.34 3.97 4.52 3.89 3.30
130Te → 130Xe 2.12 3.56 4.06 4.36 4.12
136Xe → 136Ba 1.76 2.30 3.38
150Nd → 150Sm 3.16 2.32 3.16 1.37



From today’s experiments no evidence for the 0νββ-decay was
obtained. The following bounds were inferred

|mββ | < (0.20− 0.32) eV (76Ge),

< (0.30− 0.71) eV (130Te),

< (0.50− 0.96) eV (130Mo),

< (0.14− 0.38) eV (136Xe) (1)

In future experiments, CUORE, EXO, MAJORANA, SuperNEMO ,
SNO+ , Kamland-ZEN and others a sensitivity

|mββ | ' a few 10−2 eV

is planned to be reached
We consider three-neutrino mixing. The value of |mββ | strongly

depends on the type of neutrino mass spectrum

1. Normal spectrum (NS)

m1 < m2 < m3, ∆m2
12 � ∆m2

23,

2. Inverted spectrum (IS)

m3 < m1 < m2, ∆m2
12 � |∆m2

13|.



∆m2
S = ∆m2

12(NS) = ∆m2
12(IS) ∆m2

A = ∆m2
23(NS) = |∆m2

13|(IS)

m0 = m1(NS) = m3(IS) lightest mass
∆m2

S and ∆m2
A do not depend on spectrum

Let us consider the case of small m0

I. Normal mass hierarchy m1 � m2 � m1

m1 �
√

∆m2
S ,m2 '

√
∆m2

S ,m3 '
√

∆m2
A, , |mββ | ≤ 6 · 10−3eV

(too small to be reached in future experiments)
II. Inverted mass hierarchy m3 � m1 � m2

m3 �
√

∆m2
A,m1 '

√
∆m2

A,m2 '
√

∆m2
A

|mββ | '
√

∆m2
A (1− sin2 2 θ12 sin2 α12)

1
2

α12 = α2 − α1 (Uei = |Ue1|e iαi (i=1,2)). α12 is unknown. Only
upper and lower bounds can be predicted√

∆m2
A cos 2 θ12 ≤ |mββ | ≤

√
∆m2

A



We have

1.5 · 10−2 eV ≤ |mββ | ≤ 5.0 · 10−2 eV

Such values of the effective Majorana mass are planned to be
reached in future 0νββ-experiments

Let us discuss a possibility to check three Majorana neutrino mass
mechanism in the case if the 0νββ-decay will be observed in

experiments sensitive to 10−2 eV range
|mββ | as a function of m0, calculated in the framework of the

tree-neutrino mixing, is presented in Fig. 1
In order to establish that we are in the allowed region we need to

have an information not only about|mββ | but also about m0

Such information can be obtained from cosmological data,
sensitive to

∑
i mi . From existing data

∑
i mi . 0.5 eV. Future

measurements (galaxy distributions, gravitational lensing etc) will
be sensitive to

∑
i mi ' (10−1 − 10−2) eV



Figure: mββ as function of m0.



Upper band in Fig. corresponds to the inequality (see Fig 2)

1

∆m2
A|M|2G 0 ν(E0,Z )

≤ T 0 ν
1/2 ≤

1

∆m2
A cos2 2 θ12|M|2G 0 ν(E0,Z )

If measured half-lives are in this range it will be an evidence in
favor of the three-neutrino mechanism

1. There are no reasons to expect that other possible
mechanisms of 0νββ-decay (SUSY with R-parity violation
etc) give contributions to |mββ | which are close to the 3− ν
contribution (different parameters, different NME etc)

2. No doubts that at the time when 0νββ-decay will be observed
NME will be known much better than today



Figure: 3− ν allowed values of T 0 ν
1/2


