Confronting Supersymmetric Electroweak Baryogenesis with Precision and Collider Constraints

Jonathan Kozaczuk Cosmology at Colliders Workshop TRIUMF, 12/10/2013

Outline

- 1. Overview: Baryogenesis in supersymmetry
- 2. Computing the Baryon Asymmetry
- 3. Current Constraints on MSSM EWB
- 4. Beyond the MSSM
- 5. Summary and Conclusions

-Observed baryon asymmetry: $Y_B \equiv \frac{n_q - n_{\bar{q}}}{3s} \sim 10^{-10}$

-Microphysical mechanism for generation of the asymmetry must satisfy the "Sakharov conditions":

B – violation
 C – and CP–violation
 "Arrow of time"

-Several possibilities at different scales...

- •Planck scale: $M_P \sim 10^{19} \text{ GeV}$
- •Affleck-Dine: $M_{inflation} \sim ?$
- •GUT scale: $M_{GUT} \sim 10^{16} \text{ GeV}$
- •Leptogenesis: $M_{seesaw} \sim 10^{15} \text{ GeV}$
- •Electroweak baryogenesis: $M_{EW} \sim 100 \text{ GeV}$

- •Planck scale: $M_P \sim 10^{19} \text{ GeV}$
- •Affleck-Dine: $M_{inflation} \sim ?$
- •GUT scale: $M_{GUT} \sim 10^{16} \text{ GeV}$
- •Leptogenesis: $M_{seesaw} \sim 10^{15} \text{ GeV}$

 \bigcirc Electroweak baryogenesis: $M_{EW} \sim 100 \text{ GeV}$

Bernreuther, 0205279

Jonathan Kozaczuk

Other issues with SM:

-Higgs mass put in by hand (quartic coupling). Extremely sensitive to loop corrections (Hierarchy problem)

No Dark Matter candidate

Supersymmetry can provide a solution. What about EWB?

Supersymmetry can also provide new sources of CP-violation and a first order EWPT

-MSSM has 40 new CP-violating phases (SUSY-breaking masses, couplings, etc)

Mechanism for strongly 1st order EWPT?

Sources of CP-violation?

Increasing $m_h \rightarrow$

← additional scalars (new cubic terms)

-Bosons contribute a cubic term to the finite temperature effective potential

See e.g. Balasz et al, 0412264

SUSY EWB is **testable** today...

...What do we know, and what will we learn?

8

Outline

- 1. Overview: Baryogenesis in supersymmetry
- 2. Computing the Baryon Asymmetry
- 3. Current Constraints on MSSM EWB
- 4. Beyond the MSSM
- 5. Summary and Conclusions

-SU(2) sphalerons convert LH density $n_L \rightarrow$ baryon density

 $n_B = \frac{-3\Gamma_{ws}}{v_w} \int_{-\infty}^{0} dz \ n_L(z) e^{\frac{15\Gamma_{ws}}{4v_w}z} \quad \begin{array}{c} \text{Stongly1st order EWPT} \rightarrow \text{sphalerons quenched} \\ \text{in broken phase} \end{array}$

Cline, 0609145

- n_L determined by coupled quantum Boltzmann equations for chemical potentials, accounting for all particle-number changing interactions:

$$n_i = \frac{T^2}{6} k_i \mu_i + \mathcal{O}\left(\frac{\mu_i}{T}\right)^3$$

Define common density H for both Higgses and Higgsinos (superequilibrium); sfermions decoupled

$$n_L = \sum_{i=1}^3 \frac{k_{q_i}}{k_{Q_i}} Q_i + \sum_{i=1}^3 \frac{k_{l_i}}{k_{L_i}} L_i$$

-Schwinger-Dyson \rightarrow diffusion equations for all relevant particle species:

$$\partial_{\mu} j_i^{\mu}(x) = S_i(x, \{n_i\})$$

Current density depends on all active particle-number changing processes

 $\partial_{\mu}J_{i}^{\mu} = S_{i}^{CP} + S_{i}^{CPV} + S_{i}^{\mathrm{sph}}$

Current density depends on all active particle-number changing processes

Current density depends on all active particle-number changing processes

Compute via perturbative "vev-insertion" scheme, neglecting flavor effects (results in resonant sources and relaxation rates)

Resummed sources: Carena et al, 0011055, 0208043 Prokopec et al, 0312110, 0406140 Flavor effects: Cirigliano et al, 0912.3523, 1106.0747

Current density depends on all active particle-number changing processes

Compute via perturbative "vev-insertion" scheme, neglecting flavor effects (results in resonant sources and relaxation rates)

Resummed sources: Carena et al, 0011055, 0208043 Prokopec et al, 0312110, 0406140 Flavor effects: Cirigliano et al, 0912.3523, 1106.0747

Current density depends on all active particle-number changing processes

Compute via perturbative "vev-insertion" scheme, neglecting flavor effects (results in resonant sources and relaxation rates)

Resummed sources: Carena et al, 0011055, 0208043 Prokopec et al, 0312110, 0406140 Flavor effects: Cirigliano et al, 0912.3523, 1106.0747

-Up to $\mathcal{O}(10)$ uncertainties in CPV sources

-VEV insertion approximation is the most optimistic

B. Garbrecht

Outline

- 1. Overview: Baryogenesis in supersymmetry
- 2. Computing the Baryon Asymmetry
- 3. Current Constraints on MSSM EWB
- 4. Beyond the MSSM
- 5. Summary and Conclusions

Both the EWPT and CP-violating sources are highly constrained in the MSSM

Both the EWPT and CP-violating sources are highly constrained in the MSSM

MSSM: light stops contribute cubic term to finite-T effective potential

Strongly first order EWPT in MSSM from light stop:

Recent results from lattice simulations suggest the window might be slightly larger than from 2-loop results.

Light stops are highly constrained by LHC...

Light stops lead to e.g. increase in gluon-gluon fusion Higgs production cross section (Menon + Morrissey 0903.3038)

Can be ameliorated with a light neutralino, but tenuous

Jonathan Kozaczuk

Light stops constrained by LHC searches (Krizka et al, 1212.4856, Delgado et al, 1212.6847)

For $m_{\tilde{t}} < m_t + m_{\chi_1^0}$ relevant decay channels are e.g. $\tilde{t} \rightarrow \chi_1^0 b W^+$, $\tilde{t} \rightarrow \chi_1^0 c$, $\tilde{t} \rightarrow \chi_1^0 b \ell \nu$

Razor searches in particular (unofficially) rule out the light stop scenario

Pending official analysis

May be a small window between 120 GeV and 140 GeV if a light stau allows $\tilde{t} \rightarrow \tilde{\tau}^+ \nu b$ (Carena et al, 1303.4414)

So...

The light stop scenario in the MSSM is barely holding on

What about CP-violating sources?

CP-violation either in 3rd generation sfermion sector

$$\mathcal{L} \supset y_t \tilde{t}_L \tilde{t}_R^* (A_t H_u^0 - \mu^* H_d^{0*}) + y_b \tilde{b}_L \tilde{b}_R^* (A_b H_d^0 - \mu^* H_u^{0*}) + y_\tau \tilde{\tau}_L \tilde{\tau}_R^* (A_\tau H_d^0 - \mu^* H_u^{0*}) - b H_u^0 H_d^0 + h.c.,$$

See e.g. Huet + Nelson, 9506477 JK et al, 1206.4100 ...

$$S_{\tilde{t}}^{CPV}(x) = \frac{N_C y_t^2}{2\pi^2} \operatorname{Im}(\mu A_t) v^2(x) \dot{\beta}(x) \int_0^\infty \frac{dkk^2}{\omega_R \omega_L} \operatorname{Im}\left[\frac{n_B(\mathcal{E}_R^*) - n_B(\mathcal{E}_L)}{(\mathcal{E}_L - \mathcal{E}_R^*)^2} + \frac{n_B(\mathcal{E}_R) + n_B(\mathcal{E}_L)}{(\mathcal{E}_L + \mathcal{E}_R)^2}\right]$$
Resonance

Or Higgsinos + Gauginos:

$$\mathcal{L} \supset -rac{g_1}{\sqrt{2}} ar{\Psi}_{ ilde{H}^0}(H_d^{0*}P_L - e^{i\phi_1}H_u^0P_R)\Psi_{ ilde{B}} + h.c.$$
 (+ wino interactions)

See e.g. Huet + Nelson, 9506477 Carena et al, 9702409 Cline et al, 0006119 ...

$$S_{\tilde{H}^{\pm}}^{CPV}(x) = \frac{g_2^2}{\pi^2} v(x)^2 \dot{\beta}(x) M_2 \left| \mu \right| \sin \phi_2 \int_0^\infty \frac{dkk^2}{\omega_{\tilde{H}} \omega_{\tilde{W}}} \operatorname{Im} \left[\frac{n_F(\mathcal{E}_{\tilde{W}}) - n_F(\mathcal{E}_{\tilde{H}}^*)}{(\mathcal{E}_{\tilde{W}} - \mathcal{E}_{\tilde{H}}^*)^2} - \frac{n_F(\mathcal{E}_{\tilde{W}}) - n_F(\mathcal{E}_{\tilde{H}})}{(\mathcal{E}_{\tilde{W}} + \mathcal{E}_{\tilde{H}})^2} \right]$$

Both possibilities have important phenomenological consequences

Jonathan Kozaczuk

Intensity frontier:

-Electric Dipole Moments sensitive to CP-violation

-EDM can be induced at one-loop and beyond. With heavy sfermions, two-loop contributions can still be sizable

Energy frontier:

-Collider searches constrain new SUSY degrees of freedom which must be light (O(100 GeV)) to avoid thermal suppression near the EWPT

-Predictions for mass and properties of observed 126 GeV Higgs affected by new particles

Cosmic Frontier:

-Light gauginos for CPV sources have implications for dark matter

Jonathan Kozaczuk

Higgsino-gaugino sources

-Relatively light neutralinos/charginos to avoid thermal suppression

-Resonant structure in VEV-insertion scheme

-Optimistic estimate of baryon asymmetry (keep factor of 10 in mind)

How do these sources fare with the new ACME e-EDM bound? $|d_e| \leq 8.7 \times 10^{-29} e \text{ cm}$

Higgsino-gaugino sources

Wino-driven EWB and *EWB with universal phases* (tentatively) excluded by ACME EDM limits alone!

Independent of phase transition, collider searches, etc. Also true beyond MSSM

*Implies that Higgsino-gaugino driven EWB is in tension with a good neutralino DM candidate

Higgsino-gaugino sources

Bino-driven EWB slightly more subtle

☑ EDMs suppressed in this case

□ Incompatible with strongly first order EWPT via light stop

MSSM Bino-driven EWB now excluded by stop searches, Higgs production rates, and EDMs

Higgsino-gaugino sources

What about beyond the light stop scenario?

OK with current LHC constraints on EWinos

Bino-driven EWB requires $M_1 \sim \mu \rightarrow$ compressed χ_1^0 , $\chi_{1,2}^{\pm,0}$ spectrum = difficult, but not impossible for future searches (see e.g. Gori et al, 1307.5952)

LSP under-abundant, so tough to get at with DM constraints

[GeV]

Scalar sources

Stops and sbottoms excluded by EDM constraints even before the new ACMF limit

Scalar sources

Stops and sbottoms excluded by EDM constraints even before the new ACMF limit

Scalar Sources

Scalar Sources

New EDM limit now kills stau sources in the MSSM

B=Y{Ob}

 $m_z = 82 \text{ GeV}$

m_h =125.6 GeV

tanβ=40, A_r=250 GeV, μ=200 GeV

 $\tan\beta=40, A_r=1000 \text{ GeV}, \mu=1000 \text{ GeV}$

EDM bounds require staus too heavy to allow $\widetilde{t} \to \widetilde{\tau}^+ \nu b$

Jonathan Kozaczuk

1400

1200

1000

800

600

400

200

200

400

600

800

M_{E.} [GeV]

1000

1200

 $M_{\widetilde{L}_3}$ [GeV]

So...

- All potential CPV sources in the MSSM now appear to be ruled out by EDM + collider constraints required for strongly 1st order PT even in the most optimistic estimates of the baryon asymmetry*
 - Bino- or stau-driven EWB potentially still an option beyond the MSSM light stop scenario

*Possible caveats: cancellations between various EDM contributions, nonresonant contribution to CPV source

Outline

- 1. Overview: Baryogenesis in supersymmetry
- 2. Computing the Baryon Asymmetry
- 3. Current Constraints on MSSM EWB
- 4. Beyond the MSSM
- 5. Summary and Conclusions

Scenarios beyond the MSSM can provide a strongly first order EWPT and more available parameter space for CP-violating sources

Most obvious choice: the NMSSM

$$W = W_{\text{MSSM}}|_{\mu=0} + \lambda \widehat{S}\widehat{H}_u\widehat{H}_d + \frac{\kappa}{3}\widehat{S}^3 \quad \text{New fermion+complex scalar}$$
$$-\mathcal{L}^{soft} = -\mathcal{L}^{soft}_{\text{MSSM}} + m_S^2 |S|^2 + \left(\lambda A_\lambda S H_u H_d + \frac{1}{3}\kappa A_\kappa S^3\right) + \text{h.c.}$$

Already has several nice features:

$$m_{h_1}^2 \leq \left(\cos^2 2\beta + \frac{2\lambda^2 \sin^2 2\beta}{g_1^2 + g_2^2}\right) m_Z^2.$$
 Tree-level Higgs mass enhancement
 $\mu = \lambda v_s$ Potentially no μ problem

The NMSSM can support a strongly first order EWPT without a light stop

Jonathan Kozaczuk

Variety of symmetry breaking patterns across parameter space consistent with current LHC data

	BM 1	BM 2	BM 3	BM 4
λ	0.65	0.63	0.65	0.72
κ	0.20	0.14	0.15	0.37
$A_{\lambda} \; [\text{GeV}]$	380	250	300	385
$A_{\kappa} \; [\text{GeV}]$	-95	-120	-33	20
aneta	1.5	1.5	1.7	1.5
$\mu \; [{\rm GeV}]$	220	130	150	195
$M_1 \; [\text{GeV}]$	-84	145	-93	-161
$M_{\widetilde{Q}_3} = M_{\widetilde{U}_3}$ [TeV]	1	1	1	0.8
$A_t = A_b \; [\text{GeV}]$	700	700	700	1500
$m_{h_{SM}}, m_{h_s} \; [\text{GeV}]$	125.7, 146.5	126.3, 93.1	126.3, 107.2	125.6, 231.4
m_{a_s} [GeV]	179.5	134.2	112.1	145.2
$\Delta\chi^2_{\gamma\gamma},,\Delta\chi^2_{ff}$	3.3	1.2	1.2	5.8
$m_{\widetilde{\chi}^0_1}$ [GeV]	88.6	78.6	98.1	162.9
$\widetilde{\chi}^0_1$ composition	Bino	Higgsino–Singlino	Bino	Bino
Ωh^2	0.12	0.10	0.11	0.12
$\sigma_{\rm SI} \ [{\rm cm}^2]$	1.3×10^{-45}	2.1×10^{-45}	2.2×10^{-45}	8.8×10^{-46}
$\langle \sigma v \rangle ~[{\rm cm}^3/s]$	1.1×10^{-29}	$6.94{ imes}10^{-28}$	1.24×10^{-28}	4.7×10^{-28}

Variety of symmetry breaking patterns across parameter space consistent with current LHC data

<u>BM 1:</u>

SYM
$$\rightarrow$$
 s
 $\frac{\Delta \phi}{T_n} = 1.3$
 $T_n = 195 \text{ GeV}$

	BM 1	BM 2	BM 3	BM 4
λ	0.65	0.63	0.65	0.72
κ	0.20	0.14	0.15	0.37
$A_{\lambda} \; [\text{GeV}]$	380	250	300	385
$A_{\kappa} \; [\text{GeV}]$	-95	-120	-33	20
aneta	1.5	1.5	1.7	1.5
$\mu~[{\rm GeV}]$	220	130	150	195
$M_1 \; [\text{GeV}]$	-84	145	-93	-161
$M_{\widetilde{Q}_3} = M_{\widetilde{U}_3}$ [TeV]	1	1	1	0.8
$A_t = A_b \; [\text{GeV}]$	700	700	700	1500
$m_{h_{SM}}, m_{h_s} \; [\text{GeV}]$	125.7, 146.5	126.3, 93.1	126.3, 107.2	125.6, 231.4
$m_{a_s} [{\rm GeV}]$	179.5	134.2	112.1	145.2
$\Delta\chi^2_{\gamma\gamma}$, , $\Delta\chi^2_{ff}$	3.3	1.2	1.2	5.8
$m_{\widetilde{\chi}_1^0}$ [GeV]	88.6	78.6	98.1	162.9
$\widetilde{\chi}^0_1$ composition	Bino	Higgsino–Singlino	Bino	Bino
Ωh^2	0.12	0.10	0.11	0.12
$\sigma_{\rm SI}~[\rm cm^2]$	1.3×10^{-45}	2.1×10^{-45}	2.2×10^{-45}	8.8×10^{-46}
$\langle \sigma v \rangle ~[{\rm cm}^3/s]$	1.1×10^{-29}	$6.94{ imes}10^{-28}$	1.24×10^{-28}	4.7×10^{-28}

Variety of symmetry breaking patterns across parameter space consistent with current LHC data

<u>BM 2:</u>

SYM
$$\rightarrow$$
 s+h
 $\frac{\Delta \phi}{T_n} = 6.6$
 $T_n = 58.2 \text{ GeV}$

	1			
	BM 1	BM 2	BM 3	BM 4
λ	0.65	0.63	0.65	0.72
κ	0.20	0.14	0.15	0.37
$A_{\lambda} \; [\text{GeV}]$	380	250	300	385
$A_{\kappa} \; [\text{GeV}]$	-95	-120	-33	20
aneta	1.5	1.5	1.7	1.5
$\mu~[{\rm GeV}]$	220	130	150	195
$M_1 \; [\text{GeV}]$	-84	145	-93	-161
$M_{\widetilde{Q}_3} = M_{\widetilde{U}_3}$ [TeV]	1	1	1	0.8
$A_t = A_b \; [\text{GeV}]$	700	700	700	1500
$m_{h_{SM}}, m_{h_s} \; [\text{GeV}]$	125.7, 146.5	126.3 , 93.1	126.3, 107.2	125.6, 231.4
$m_{a_s} \; [\text{GeV}]$	179.5	134.2	112.1	145.2
$\Delta\chi^2_{\gamma\gamma}$, , $\Delta\chi^2_{ff}$	3.3	1.2	1.2	5.8
$m_{\widetilde{\chi}_1^0} [{ m GeV}]$	88.6	78.6	98.1	162.9
$\widetilde{\chi}^0_1$ composition	Bino	Higgsino–Singlino	Bino	Bino
Ωh^2	0.12	0.10	0.11	0.12
$\sigma_{\rm SI} \ [{\rm cm}^2]$	1.3×10^{-45}	2.1×10^{-45}	2.2×10^{-45}	8.8×10^{-46}
$\langle \sigma v \rangle ~[{\rm cm}^3/s]$	1.1×10^{-29}	$6.94{ imes}10^{-28}$	1.24×10^{-28}	4.7×10^{-28}

Variety of symmetry breaking patterns across parameter space consistent with current LHC data

<u>BM 3:</u>

SYM
$$\rightarrow$$
 s \rightarrow h
 $\frac{\Delta \phi}{T_n} = 1.1, 2.12$
 $T_n = 1.12 \text{ GeV}, 110 \text{ GeV}$

	BM 1	BM 2	BM 3	BM 4
λ	0.65	0.63	0.65	0.72
κ	0.20	0.14	0.15	0.37
$A_{\lambda} \; [\text{GeV}]$	380	250	300	385
$A_{\kappa} \; [\text{GeV}]$	-95	-120	-33	20
aneta	1.5	1.5	1.7	1.5
$\mu \ [{\rm GeV}]$	220	130	150	195
$M_1 \; [\text{GeV}]$	-84	145	-93	-161
$M_{\widetilde{Q}_3} = M_{\widetilde{U}_3}$ [TeV]	1	1	1	0.8
$A_t = A_b \; [\text{GeV}]$	700	700	700	1500
$m_{h_{SM}}, m_{h_s} \; [\text{GeV}]$	125.7, 146.5	126.3, 93.1	126.3, 107.2	125.6, 231.4
$m_{a_s} \; [\text{GeV}]$	179.5	134.2	112.1	145.2
$\Delta\chi^2_{\gamma\gamma}$, , $\Delta\chi^2_{ff}$	3.3	1.2	1.2	5.8
$m_{{\widetilde \chi}^0_1}$ [GeV]	88.6	78.6	98.1	162.9
$\widetilde{\chi}^0_1$ composition	Bino	Higgsino-Singlino	Bino	Bino
Ωh^2	0.12	0.10	0.11	0.12
$\sigma_{\rm SI}~[\rm cm^2]$	1.3×10^{-45}	2.1×10^{-45}	2.2×10^{-45}	8.8×10^{-46}
$\langle \sigma v \rangle ~[{\rm cm}^3/s]$	1.1×10^{-29}	$6.94{ imes}10^{-28}$	1.24×10^{-28}	4.7×10^{-28}
	•			

Variety of symmetry breaking patterns across parameter space consistent with current LHC data

<u>BM 4:</u>

s → h

$$\frac{\Delta \phi}{T_n} = 1.1$$

 $T_n = 106 \text{ GeV}$

						_
		BM 1	BM 2	BM 3	BM 4	
	λ	0.65	0.63	0.65	0.72	
	κ	0.20	0.14	0.15	0.37	
	$A_{\lambda} \; [\text{GeV}]$	380	250	300	385	
	$A_{\kappa} \; [\text{GeV}]$	-95	-120	-33	20	
	aneta	1.5	1.5	1.7	1.5	
	$\mu \ [\text{GeV}]$	220	130	150	195	
	$M_1 \; [\text{GeV}]$	-84	145	-93	-161	
	$M_{\widetilde{Q}_3} = M_{\widetilde{U}_3}$ [TeV]	1	1	1	0.8	
	$A_t = A_b \; [\text{GeV}]$	700	700	700	1500	
	$m_{h_{SM}}, m_{h_s} \; [\text{GeV}]$	125.7, 146.5	126.3, 93.1	126.3, 107.2	125.6, 231.4	
	m_{a_s} [GeV]	179.5	134.2	112.1	145.2	
	$\Delta\chi^2_{\gamma\gamma},$, $\Delta\chi^2_{ff}$	3.3	1.2	1.2	5.8	
	$m_{\widetilde{\chi}^0_1} \ [\text{GeV}]$	88.6	78.6	98.1	162.9	
	$\widetilde{\chi}^0_1$ composition	Bino	Higgsino-Singlino	Bino	Bino	
	Ωh^2	0.12	0.10	0.11	0.12	
	$\sigma_{\rm SI}~[{\rm cm}^2]$	1.3×10^{-45}	2.1×10^{-45}	2.2×10^{-45}	8.8×10^{-46}	
	$\langle \sigma v \rangle ~[{\rm cm}^3/s]$	1.1×10^{-29}	$6.94{ imes}10^{-28}$	1.24×10^{-28}	4.7×10^{-28}	
						a 1

NMSSM also allows for additional sources of CP-violation

Gaugino-Higgsino-, stau-sourced explicit CPV (now with $\mu \rightarrow \mu(x)$) E.g. JK et al, 1302.4781

"Transitional CPV": CP-violating high-T minimum (no EDM contribution) Huber et al, 0003122

Spacetime-dependent CP phase

Huber et al, 0606298

Singlino-sourced explicit CPV

Cheung et al, 1201.3781

Rich phenomenology in both EWPT and CPV possibilities worth (re-)exploring

Jonathan Kozaczuk

Conclusions

MSSM Electroweak baryogenesis appears to be ruled out.

Pending:

- Incorporating non-resonant CPV sources
- Consideration of potential cancellations in EDM contributions
- More systematic treatment of uncertainties

NMSSM regions compatible with 125 GeV Higgs, LHC, and DM can have a rich phenomenology for EWB.

- Strongly 1st order EWPT from singlet without light stop
- New sources of CPV not present in MSSM (worth re-exploring)

Backup Slides

Both the EWPT and CP-violating sources are highly constrained in the MSSM Strongly first order EWPT in MSSM from light stop

Leads to e.g. increase in gluon-gluon fusion Higgs production cross-section (Menon +Morrissey 0903.3038)

Can be ameliorated with light (~60 GeV) neutralino (Carena et al, 1207.6330)

Carena et al, 1207.6330

New results from lattice simulations suggest the window might be slightly larger than from 2-loop

results:

Light stop \rightarrow too large ggf production cross-section

Global fit by Belanger et al,1306.2941

Putting it all together:

*Also verified that non-resonant (resummed) sources do not open up additional parameter space