### LHC constraints on dark matter with $\gamma$ -ray lines or strong self-interactions



Jim Cline, McGill University TRIUMF, 9-11 Dec., 2013

#### Outline

- Hints of 130 GeV DM annihilating to  $\gamma\gamma$  at the galactic center
- Challenges for model building, and two examples: JC, 1205.2688, loop-induced annihilation JC, A. Frey, G. Moore, 1208.2685, composite magnetic DM
- Constraints from LHC: JC, G. Dupuis, Z. Liu, 1306.3217
- Composite model of strongly interacting DM and the LHC JC, G. Moore, Z. Liu, W. Xue, 1312.xxxx

### Part I:

Hints of

# 130 GeV DM

J.Cline, McGill U. – p. 3

#### **Evidence for 130 GeV DM**

Hints were found of DM annihilations  $\chi\chi \rightarrow \gamma\gamma$  at the galactic center from publicly available Fermi/LAT data (analyzed by theorists!):

| Bringmann <i>et al.</i> 1203.1312                                      | $4.1\sigma (3.1\sigma)$                         | galactic center   |  |
|------------------------------------------------------------------------|-------------------------------------------------|-------------------|--|
| Weniger 1204.2797                                                      | $4.6\sigma~(3.3\sigma)$                         | galactic center   |  |
| Tempel <i>et al.</i> 1205.1045                                         | $4.5\sigma~(4.0\sigma)$                         | GC, line spect.   |  |
| Su & Finkbeiner, 1206.1616                                             | $6.5\sigma~(5.2\sigma)$                         | GC, double line   |  |
| Hektor <i>et al.</i> 1207.4466                                         | $(3.6\sigma)$                                   | galactic clusters |  |
| Su & Finkbeiner, 1207.7060                                             | $3.3\sigma$                                     | unassociated      |  |
|                                                                        |                                                 | Fermi sources     |  |
| Finkbeiner, <i>et al.</i> 1209.4562,<br>Hektor <i>et al.</i> 1209.4548 | argue against suspected instrumental background |                   |  |

#### Morphology

Most significant signal is from galactic center. Tempel, Raidal & Hektor 1205.1045:



J.Cline, McGill U. - p. 5

#### **Energy spectrum**

#### From Su & Finkbeiner 1206.1616:



Smaller bump at 111 GeV consistent with  $\chi\chi \rightarrow \gamma Z$  if  $m_{\chi} \cong 130$  GeV.

This second line is expected in most models, including ours! (DM couples to hypercharge, not just electric charge)

#### **Concerns with the DM interpretation**

- Profumo, Linden 1204.6047 suggest astrophysical Fermi bubble source; disputed by others (Su, Finkbeiner 1206.1616)
- Boyarsky, Malyshev, Ruchayskiy 1205.4700 argue that spectral bumps can be found at other frequencies and locations;
- 130 GeV excess found in earth limb photons—detector noise contamination?
- Fermi collaboration finally does their own analysis (1305.5597), finding bump with smalller significance, 3.3σ (local), 1.5σ (global)
- Daniel Whiteson doesn't believe in it (1208.3677, 1302.0427)

#### **On the other hand** . . .

Fermi is changing its observing strategy to spend more time observing the galactic center, to settle the issue.

Perhaps H.E.S.S. II will beat them to it

Regardless of 130 GeV signal, DM models that produce gamma ray lines might be interesting in the future, so we keep an open mind



# Models of DM

with Y ray lines

J.Cline, McGill U. – p. 9

#### **Challenges to model building**

Generic (SUSY) dark matter models have much smaller  $\sigma v(\chi\chi \to \gamma\gamma)$ .

Constraints on  $\chi\chi \rightarrow f\bar{f}$ , WW, ZZ due to continuum photons from decays and inverse Compton ( $f\gamma \rightarrow f\gamma$ ) Rules out neutralinos (Cohen *et al.*, 1207.0800, Buchmüller & Garny, 1206.7056)

Loop effect is generically too small to give big enough  $\sigma v(\chi\chi\to\gamma\gamma)$ 



#### A loop model that works (Model 1)

JC, 1205.2688 proposed scalar DM X coupling to exotic charged ( $q_s = 2$ ) and colored (under hidden SU(N)) scalar S:

$$\mathcal{L}_{\text{int}} = \frac{\lambda X}{2} X^2 |S|^2 + \lambda_{hS} |H|^2 |S|^2 + \frac{\lambda_{hX}}{2} |H|^2 X^2$$

Loop (rate) is enhanced by  $q_s^4 N_c^2 = 144$  for  $N_c = 3$ .



#### **Relic density (loop model)**

The  $\lambda_{hX}$  coupling can control the relic density of *X*,

$$\mathcal{L}_{\text{int}} = \frac{\lambda_X}{2} X^2 |S|^2 + \lambda_{hS} |H|^2 |S|^2 + \frac{\lambda_{hX}}{2} |H|^2 X^2$$

through the annihilations  $XX \rightarrow hh, WW, ZZ$ ,



Gives right relic density if  $\lambda_{hX} = 0.05$  (or less if  $XX \rightarrow gg$  is important, but dark glueballs may be heavier than X).

#### **Direct detection (loop model)**

Same coupling  $\lambda_{hX}$  controls rate of X interaction with nucleons in direct detection experiments



 $(f \cong 0.32^{+0.31}_{-0.06}$  from lattice, sum rules,  $\chi$ PT ...)

Using  $\lambda_{hX} = 0.05$ , Cross section for XN scattering is  $1.5 \times$  lower than current LUX limit

Should be discovered by improved xenon experiments

#### Model 2: Magnetic dark matter

JC, Frey, Moore 1208.2685; see also Weiner, Yavin 1206.2910, 1209.1093 DM with large magnetic moment could explain Fermi line



Model is simple: new SU(2) confining gauge interaction, "quark"  $\psi$ , "squark" S, Majorana particle  $\chi$ 

DM is mixture of  $\chi$  and  $\psi S$  bound state; Dirac  $\psi S$  state splits into two Majorana states  $\chi_{1,2}$   $\chi \xrightarrow[y]{\underbrace{ \begin{array}{c} & \\ & \\ & \end{array}}} \eta \\ \underbrace{ \begin{array}{c} & \\ & \\ & \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ & \end{array} \\ \begin{array}{c} & \\ & \end{array} \\ \begin{array}{c} & \\ & \end{array} \\ \end{array} \\ \begin{array}{c} & \\ & \end{array} \\ \end{array} \\ \begin{array}{c} & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \\ & \end{array} \\ \end{array} \\ \begin{array}{c} & \\ \end{array} \\ \end{array} \\ \end{array}$  \\ \end{array} \\ \begin{array}{c} & \\ \end{array} \end{array} \\ \end{array}

Transition magnetic moment connects DM ground state and first excited state,  $\mu_{12} (\bar{\chi}_1 \sigma_{\mu\nu} \chi_2) F^{\mu\nu}$ 

Compositeness gives large  $\mu_{12} \sim e/m_{\psi}$ 

#### **Particle content of magnetic model**

|                 |                | 2                     | 368V - 2660   | 85                 |                   | 242 (ASA)       | 345 C42 | 0.000              | <u></u>   |
|-----------------|----------------|-----------------------|---------------|--------------------|-------------------|-----------------|---------|--------------------|-----------|
| ury<br>ints     |                | state                 | spin          | $\mathrm{SU}(2)_g$ | $\mathrm{U}(1)_y$ | $\rm U(1)_{em}$ | $Z_4$   | constituents       | ]         |
| enta<br>itue    | Majorana state | $\chi$                | $\frac{1}{2}$ | 1                  | 0                 | 0               | -1      | -                  | ]         |
| emo             | "quark"        | $\psi_a$              | $\frac{1}{2}$ | $\overline{2}$     | -1                | $-\frac{1}{2}$  | i       | -                  |           |
| ыŭ              | "squark"       | $S^a$                 | 0             | 2                  | 1                 | $\frac{1}{2}$   | i       | -                  |           |
| Bound<br>States | "mesons"       | $\eta$                | $\frac{1}{2}$ | 1                  | 0                 | 0               | -1      | $S\psi$ fer        | ר<br>mion |
|                 |                | $	ilde\eta_S$         | 0             | 1                  | 0                 | 0               | 1       | $S^*S$ bos         | son       |
|                 |                | $	ilde\eta_\psi$      | 0             | 1                  | 0                 | 0               | 1       | $ar{\psi}\psi$ bos | son       |
|                 | "baryons"      | $N^{-}$               | $\frac{1}{2}$ | 1                  | -2                | -1              | 1       | $S^*\psi$ fer      | mion      |
|                 |                | $\tilde{N}^+_\mu$     | 0             | 1                  | 2                 | 1               | -1      | SS bos             | son       |
|                 |                | $	ilde{N}_{\psi}^{-}$ | 0             | 1                  | -2                | -1              | -1      | $\psi\psi$ bos     | son       |

Dark matter states  $\chi_{1,2,3}$  are admixtures of  $\chi$ ,  $\eta,$   $\eta^c$ 

$$V = \frac{1}{2} m_{\chi} \bar{\chi} \chi + m_{\psi} \bar{\psi} \psi + m_{S}^{2} |S|^{2} + \lambda |S|^{4} + \chi S^{a} (y + iy_{5} \gamma_{5}) \psi_{a} + y' \epsilon_{ab} S_{a}^{*} \bar{e}_{R} \psi_{b} + \text{h.c.} \chi - \eta \text{ mixing} \text{ charged relic decay}$$

#### **Relic density (magnetic model)**

Considering only magnetic moment coupling, annihilation diagrams are



Diagram (b) suppresses relic density too much, unless  $m_{\chi_2} - m_{\chi_1} \gtrsim 10$  GeV. (Then  $\chi_2 \rightarrow \chi_1 \gamma$  gets rid of  $\chi_2$ .)

If magnetic moment  $\mu_{12} \cong 2 \text{ TeV}^{-1}$ , relic density  $n_{\chi}$  is  $\sim 10 \times$  smaller than normal, but predicted  $\gamma$  ray signal is still big enough:

$$2\gamma$$
 rate  $\sim n_{\chi}^2 \mu_{12}^4$ 

 $\chi_1$  is subdominant component of dark matter

#### **Direct detection (magnetic model)**

Because of large mass splitting  $m_{\chi_2} - m_{\chi_1} \gtrsim 10$  GeV, there is no direct detection signal at tree level:



 $\chi_1$  does not have enough energy to produce  $\chi_2$ . Can have loop-induced interaction





### LHC Constraints

## on DM with lines

J.Cline, McGill U. – p. 18

#### What to look for

an array of exotic signals ...

- $H \rightarrow 2\gamma$  enhancement
- Same-sign dileptons
- Resonant "vector meson" production, decay into leptons
- Excited  $e,\mu$  imposters (charged mesons),  $e^*,\mu^* \to e,\mu+\gamma$
- Photon pairs from neutral meson decays, 4-photon events
- monophotons

vector mesons give strongest constraint

#### Higgs to $\gamma\gamma$ enhancement (loop model)

In loop model, similar diagrams as for  $XX \rightarrow \gamma\gamma$  contribute to  $h \rightarrow \gamma\gamma$ :



#### **Charged particles via Drell-Yan**

 $pp \to \psi \bar{\psi} \text{ or } SS^*$ 



But  $\psi$  and S are strongly interacting—they "hadronize" in the dark SU(N)

This makes them harder to discover!

#### Like-sign lepton signal (loop model)

Charge  $\pm 2$  states *S* must not be stable—stringent constraints on charged relics.

Introduce neutral fundamental scalar T to allow  $S \rightarrow T l^+ l^+$  through dimension-5 interaction

 $\Lambda^{-1} T^* S \, \bar{l}^c l$ 

Then  $ST^*$  bound state decays into like-sign leptons.



If l = e or  $\mu$ , this is constrained by recent CMS (1207.2666) and ATLAS (1210.5070) analyses





Charge-2 meson  $\eta_{ST}$  must be heavier than 470 GeV (210 GeV) if it decays into  $e, \mu$  ( $\tau$ ).

#### **Vector meson production**



$$|\psi(0)|^2 \sim m_{\psi} k_d$$

where  $k_d$  is string tension of dark SU(N).

Vector meson  $\phi_S = SS^*$  has  $\ell = 1$ , so  $\psi(0) = 0$ ; production goes like  $|\vec{\nabla}\psi(0)|^2$ 

#### **Vector meson constraints** Constraints depend on $BR(\phi \rightarrow e^+e^- \text{ or } \mu^+\mu^-)$ and $k_d$

 $pp \rightarrow \gamma/Z \rightarrow \phi \rightarrow \gamma/Z \rightarrow \ell^+ \ell^-$ 



Bound on meson mass is  $m_{\phi} \gtrsim 250 - 500 \text{ GeV}$ 

#### **Excited electrons and muons**

Singly charged mesons  $S^*\psi = N^-$  in magnetic DM model have same quantum numbers as charged leptons; they decay into lepton +  $\gamma$ :



M<sub>N</sub> [GeV]

#### **Diphotons (from 4-photon events)**



#### **4-photon events**



Reconstructed events for  $m_{\eta_S}=300~{\rm GeV},~\Gamma=1~{\rm GeV},$   $\sqrt{s}=14~{\rm TeV}$ 

Discovery potential for 4- $\gamma$  signal after upgrade of beam

#### Monophotons

From vector meson production/decay:



Predicted signals are far below current constraints:



#### **Summary of LHC constraints**

| LHC Observable            | Constraint                                             | Constraint                              |
|---------------------------|--------------------------------------------------------|-----------------------------------------|
|                           | (loop model)                                           | (MD model)                              |
| $h \to \gamma \gamma$     | $\lambda_h / \lambda_X < 0.25$                         |                                         |
| same-sign                 | $BR(\eta_{ST} \to ee, \mu\mu) \ll 1$                   | _                                       |
| dileptons                 | or $m_{\eta_{ST}} > 200~{\rm GeV}$                     |                                         |
| vector meson              | $m_{\phi_S} > 310 \; \mathrm{GeV}$                     | $m_{\phi_\psi} > 250 \; \mathrm{GeV}$   |
| production                | $\Lambda_d > {\sf few} 	imes m_{\scriptscriptstyle S}$ | $\Lambda_d \gtrsim 300 \; \mathrm{GeV}$ |
| excited lepton searches   | _                                                      | $m_N > 370 \; \mathrm{GeV}$             |
| diphoton production       | $m_{\eta_S} > 220 \; \mathrm{GeV}$                     | $m_{\eta_\psi} > 140~{\rm GeV}$         |
| 4-photon events           | $m_{\eta_S} > 750 \; \mathrm{GeV}$                     | $m_{\eta_{\psi}} > 600 \; \mathrm{GeV}$ |
| (14 TeV, 100 fb $^{-1}$ ) |                                                        |                                         |
| monophotons               | —                                                      |                                         |

Summary of LHC constraints for 130 GeV dark matter. 4-photon constraints based on the ultimate reach of LHC.

### Part 4:

## Strongly Interacting

### Dark Matter @ LHC

J.Cline, McGill U. – p. 31

#### **Hints for DM self-interactions**

DM with elastic self-interaction

 $\sigma/m \cong 0.6 \ {\rm cm}^2/{\rm g}$ 

can help resolve some problems of structure formation:

- Predicted halo profiles more cuspy than observed
- Too many large satellite galaxies predicted by simulations
- JC, Moore, Liu, Xue 1312.xxxx study composite DM models that naturally have large  $\sigma$
- Dark glueballs with  $m \cong 500$  MeV have right  $\sigma/m$
- Can have associated LHC signal

#### Dark glueballs interacting with $Z^{\prime}$

If dark sector has SU(N) with only heavy quarks, glueballs can be dark matter

Assume quarks have U(1)' with Z' that couples to leptons; then glueballs are metastable:



CMB constrains  $m_{Z'}$  (lifetime > 4 × 10<sup>24</sup> s):

$$m_{Z'} \gtrsim 2.3 \text{ TeV} \left(\frac{\alpha'^2 \alpha_N}{10^{-5}}\right)^{1/4} \begin{cases} x^{-1}, & x < 1\\ 1, & x > 1 \end{cases}$$

where  $x = m_q/700$  MeV.

#### ATLAS constrains $\alpha'$ via dileptons



#### **Combining ATLAS + CMB constraints**

If  $m_q$  is not far above dark confinement scale, LHC and CMB have comparable sensitivity;

CMB bound assuming ATLAS constraint on  $\alpha'$  is saturated:



#### Conclusions

- Secret theme of this talk: dark sector with confining SU(N) – why not? We have SU(3) in visible sector.
- Compositeness/strong dynamics can help to produce large DM annihilation cross section into photons
- 130 GeV DM will be definitively probed in coming year or two. Maybe  $\gamma$ -ray lines at other energies will be found?
- Confinement makes relatively light charged particles harder to find at LHC than otherwise
- Resonant production of vector "mesons" is the most sensitive probe, but several other exotic signals predicted
- Dark glueball DM might be indirectly probed at LHC through discovery of Z' with enhanced invisible width (from decays into dark quarks).

#### extra slides

#### $\chi\chi \to \gamma\gamma$ cross section in loop model

It was shown that a cross section for  $\chi\chi \to \gamma\gamma$  consistent with the value determined in ref. [2] for 130 GeV dark matter could be obtained for parameter values  $q_s = 2$ ,  $\lambda_{s\chi} = 3$ ,  $N_c = 3$ ,  $m_s = 170$  GeV, for example. More generally, one can express the cross section  $\langle \sigma v \rangle_{\chi\chi \to \gamma\gamma}$  in terms of the mass ratio  $r = m_s/m_\chi$  as

$$\frac{\langle \sigma v \rangle_{\chi\chi \to \gamma\gamma}}{0.1 \langle \sigma v \rangle_0} = 0.44 \left(\frac{q_s}{2}\right)^4 \left(\frac{\lambda_{s\chi}}{3}\right)^2 \left(\frac{N_c}{3}\right)^2 \left(\frac{m_\chi}{130 \text{ GeV}}\right)^{-2} r^{-4} f(r)$$
(2.2)

where  $f(r) = 9r^4(1 - r^2(\sin^{-1}(1/r))^2)^2 \rightarrow 1$  for large r and is numerically fit by the formula  $f(r) \cong 1 + 0.4/(r - 0.972)$  which is good to 6% for any value of r > 1.001. (We define f in this way so that the r dependence in (2.2) is all transparently in the  $r^{-4}$  factor for  $r \gg 1$ .) The combination  $r^{-4}f(r)$  reaches its maximum value  $\cong 19.4$  when r = 1. Recall that  $\langle \sigma v \rangle_0 = 1$  pb·c is the nominal relic density cross section.

#### $\chi\chi \to \gamma\gamma$ cross section in magnetic model

$$\langle \sigma v \rangle_{\text{eff}} \cong 0.1 \langle \sigma v \rangle_0 \left( \frac{f(r)}{\cos \theta} \right)^4 \left( \frac{m_{\psi}}{100 \text{ GeV}} \right)^4$$

where 
$$r = m_{\chi_2}/m_{\chi_1}$$
,  $f(r) = \sqrt{(r+1/r)/2}$ ,  
 $\theta = mass mixing angle$ 

#### **Vector meson** $\rightarrow$ **dilepton cross section**

$$\sigma(q\bar{q} \to \phi \to e^+e^-) = \frac{4\pi q_q^2}{\cos^4(\theta_W)} \frac{\Gamma^2(\phi \to e^+e^-)}{(\hat{s} - m_\phi^2)^2 + m_\phi^2 \Gamma^2(\phi \to \text{any})}$$

where

$$\Gamma(\phi_{\psi} \to e^+ e^-) = \frac{4\pi N_c}{3} \frac{\alpha^2 q_{\psi}^2}{E_{\psi}^2} |\Psi(0)|^2$$

$$\Gamma(\phi_s \to e^+ e^-) = \frac{8\pi N_c}{3} \frac{\alpha^2 q_S^2}{E_s^2 m_\phi^2} |\vec{\nabla}\Psi(0)|^2$$

#### **Relic density (magnetic DM model)**

Additional possible contributions to annihilation from bound states should be suppressed to avoid making  $n_{\chi}$  too small



Can arrange for  $m_{\tilde{\eta}_i} > 2m_{\chi_1}$  to block diagram (a).

Diagram (b) is estimated to be small unless resonantly enhanced.

Alternatively, diagram (b) could be used to help get the observed  $\chi\chi \rightarrow \gamma\gamma$  in the galactic center