Cosmology at Colliders: Possible LHC searches for RPV baryogenesis

> Haipeng An Perimeter Institute

In collaboration with Yue Zhang

arXiv:1310.2608

- We are made of baryons and we have been living for a long time, not a lot of anti-baryon around us.
- There is a baryon-anti-baryon asymmetry
- Where does this asymmetry come from?
 - Initial condition?
 - Dynamics?
- If it is from some dynamics (mechanism, scenario ...), can we test it in today's laboratory?

- Higgs is discovered
- Naturalness problem is still unsolved
- SUSY: sub-TeV scale top-partner is needed

• Constraints are strong for R-parity conserving SUSY

- R-parity violation (RPV) extension can be used to kill the large missing energy, and therefore relax the constraints
- $W_{\rm RPV} = \lambda LLe^c + \lambda' QLd^c + \lambda'' u^c d^c d^c + \mu' LH_u$

- R-parity violation (RPV) extension can be used to kill the large missing energy, and therefore relax the constraints
- $W_{\rm RPV} = \lambda LLe^c + \lambda' QLd^c + \lambda'' u^c d^c d^c + \mu' LH_u$
 - ✓ Usually invoked to trade large MET to jets.
 - ✓ No proton decay

• $\lambda'' \lesssim 10^{-7}$ \longrightarrow

The primordial baryon number is washed out below TeV scale! New baryogenesis is in need!

Displaced vertices at the LHC (see Barry el al 1310.3853 for detail)

Goal

 To propose an directly detectable low scale baryogenesis scenario within the RPV SUSY framework.

Outline

- Baryogenesis from squark decay
- Collider constraints and signatures
- Embed the baryogenesis scenario into realistic models
 - MSSM with a horizontal symmetry
 - MSSM case
- Summary

- In RPV SUSY models, the RPV couplings are the sources to washout the baryon number.
- Can we make use of them to re-generate the baryon number?

- In RPV SUSY models, the RPV couplings are the sources to washout the baryon number.
- Can we make use of them to re-generate the baryon number?
- Sakharov conditions:
 - C and CP violations
 - Baryon number violation
 - Out-of-equilibrium

- In RPV SUSY models, the RPV couplings are the sources to washout the baryon number.
- Can we make use of them to re-generate the baryon number?
- Sakharov conditions:
 - C and CP violations (Complex phases of λ' and λ'')
 - ✓ Baryon number violation (B-violating RPV)
 - ✓ Out-of-equilibrium (squark decay)

• Squarks are complex scalars

CPT theorem \longrightarrow $\Gamma_{\tilde{q}} = \Gamma_{\tilde{q}^{\dagger}}$

• Squarks are complex scalars

CPT theorem $\longrightarrow \Gamma_{\tilde{q}} = \Gamma_{\tilde{q}^{\dagger}}$ At least two decay channels with different baryon numbers must be invoked. <u>Nanopoulos, Weinberg, 1979</u>

• Squarks are complex scalars

CPT theorem

At least two decay channels with different baryon numbers must be invoked. <u>Nanopoulos, Weinberg, 1979</u>

 $\longrightarrow \quad \Gamma_{\tilde{q}} = \Gamma_{\tilde{q}^{\dagger}}$

• $W_{\rm RPV} = \lambda LLe^c + \lambda' QLd^c + \lambda'' u^c d^c d^c + \mu' LH_u$

• Squarks are complex scalars

CPT theorem

At least two decay channels with different baryon numbers must be invoked. <u>Nanopoulos, Weinberg, 1979</u>

 $\Gamma_{\tilde{q}} = \Gamma_{\tilde{q}^{\dagger}}$

- Proton decay constraints
 - If first generation quarks involved, $|\lambda'\lambda''| < 10^{-26}$.
 - If only second and third generations are involved, the proton decay is suppressed by the CKM.
 - In practice, the model we choose

$$\mathcal{L} \simeq \lambda_i'' \bar{b}^c P_R c \tilde{d}_i + \lambda_i' (\bar{t} P_R \mu^c - b P_R \nu^c) \tilde{d}_i$$

- A toy model with down-type squarks
 - For right handed quarks, we can assume that there is no rotations, so we can avoid first generation by hand.

$$\mathcal{L} = \lambda_i'' \bar{b}^c P_R c \tilde{d}_i + \lambda_{ij}' (\bar{u}_j P_R \mu^c - V_{jk} \bar{d}_k P_R \nu^c) \tilde{d}_i$$

Quarks are in mass eigenstates

- A toy model with down-type squarks
 - For right handed quarks, we can assume that there is no rotations, so we can avoid first generation by hand.

$$\mathcal{L} = \lambda_i'' \bar{b}^c P_R c \tilde{d}_i + \lambda_{ij}' (\bar{u}_j P_R \mu^c - V_{jk} \bar{d}_k P_R \nu^c) \tilde{d}_i$$
Quarks are in mass eigenstates
No first
generation
$$\lambda_{i1}' \approx 0$$

$$V_{21} \lambda_{i2}' + V_{31} \lambda_{i3}' \approx 0$$

$$V_{31} \ll V_{21} \longrightarrow \lambda_{i3}' \gg \lambda_{i2}'$$

• Decay channels: $\mathcal{L} \simeq \lambda_i'' \bar{b}^c P_R c \tilde{d}_i + \lambda_i' (\bar{t} P_R \mu^c - b P_R \nu^c) \tilde{d}_i$

$$\tilde{d}_i \to \bar{b}\bar{c}, \ t\mu^-(b\nu) \ , \quad \tilde{d}_i^* \to bc, \ \bar{t}\mu^+(\bar{b}\bar{\nu})$$

$$\varepsilon_i \equiv \frac{\Gamma_{\tilde{d}_i \to \bar{b}\bar{c}} - \Gamma_{\tilde{d}_i^* \to bc}}{\Gamma_{\tilde{d}_i \to \bar{b}\bar{c}} + \Gamma_{\tilde{d}_i^* \to bc}} \ , \ \ \mathrm{Br}_i \equiv \frac{\Gamma_{\tilde{d}_i \to \bar{b}\bar{c}}}{\Gamma_{\tilde{d}_i \to \bar{b}\bar{c}} + 2\Gamma_{\tilde{d}_i \to t\mu^-}}.$$

- All other branching ratios can be determined from ε_i and Br_i .

• Decay channels: $\mathcal{L} \simeq \lambda_i'' \bar{b}^c P_R c \tilde{d}_i + \lambda_i' (\bar{t} P_R \mu^c - b P_R \nu^c) \tilde{d}_i$

- All other branching ratios can be determined from ε_i and Br_i .

• CP violation $\tilde{d_1}$ $\tilde{d_1}$ b c t t μ t t μ

 \tilde{d}_2

• CP violation

• CP violation

• Boltzmann equations

– Squarks freeze out and decay $\ Y=n/s$

$$\frac{dY_{\tilde{d}_i}}{dz} = -\frac{\langle \Gamma_i \rangle}{H(z)z} (Y_{\tilde{d}_i} - Y_{\tilde{d}_i}^{\text{eq}}) - \frac{s\langle \sigma v_i \rangle}{H(z)z} (Y_{\tilde{d}_i}^2 - (Y_{\tilde{d}_i}^{\text{eq}})^2)$$

Evolution of baryon number

$$\frac{dY_B}{dz} = -\frac{2\varepsilon_i \Gamma_i''}{H(z)z} (Y_{\tilde{d}_i} - Y_{\tilde{d}_i}^{\text{eq}}) + \text{washout terms}$$

- Boltzmann equations – Squarks freeze out and decay $\frac{dY_{\tilde{d}_i}}{dz} = -\frac{\langle \Gamma_i \rangle}{H(z)z} (Y_{\tilde{d}_i} - Y_{\tilde{d}_i}^{eq}) - \frac{s \langle \sigma v_i \rangle}{H(z)z} (Y_{\tilde{d}_i}^2 - (Y_{\tilde{d}_i}^{eq})^2)$
 - Evolution of baryon number

$$\frac{dY_B}{dz} = -\frac{2\varepsilon_i \Gamma_i''}{H(z)z} (Y_{\tilde{d}_i} - Y_{\tilde{d}_i}^{\rm eq}) + \text{washout terms}$$

- Boltzmann equations – Squarks freeze out and decay $\frac{dY_{\tilde{d}_i}}{dz} = -\frac{\langle \Gamma_i \rangle}{H(z)z} (Y_{\tilde{d}_i} - Y_{\tilde{d}_i}^{\text{eq}}) - \frac{s\langle \sigma v_i \rangle}{H(z)z} (Y_{\tilde{d}_i}^2 - (Y_{\tilde{d}_i}^{\text{eq}})^2)$
 - Evolution of baryon number

$$\frac{dY_B}{dz} = -\frac{2\varepsilon_i \Gamma_i''}{H(z)z} (Y_{\tilde{d}_i} - Y_{\tilde{d}_i}^{eq}) + \text{washout terms}$$
Source term:
 $\tilde{d}_i \to \bar{b}\bar{c}$

• Thermal evolution

• Thermal evolution

• Thermal evolution

Outline

- Baryogenesis from squark decay
- Collider signatures and constraints
- Embed the baryogenesis scenario into realistic models
 - MSSM with a horizontal symmetry
 - MSSM case
- Summary

At the early Universe

Inside the LHC

 $ilde{d}_i \;,\; ilde{d}_i^\dagger$

Boltzmann distribution

$$\begin{split} \tilde{d}_i , \ \tilde{d}_i^{\dagger} \\ f_{\text{parton}} \times \hat{\sigma}_{gg \to \tilde{d}_i \tilde{d}_i^{\dagger}} \end{split}$$

At the early Universe

 $ilde{d}_i \;,\; ilde{d}_i^\dagger$

Boltzmann distribution

Non-equilibrium decay, preferably

•
$$\tilde{d}_i \to t\mu^-(b\nu)$$

• $\tilde{d}_i^{\dagger} \to b^c c^c$

Inside the LHC

$$\begin{split} & \tilde{d}_i \;,\; \tilde{d}_i^\dagger \ f_{\mathrm{parton}} imes \hat{\sigma}_{gg
ightarrow ilde{d}_i ilde{d}_i^\dagger} \end{split}$$

Just decay, preferably (Non-equilibrium for surg)

- $d_i \to t\mu^-(b\nu)$
- $\tilde{d}_i^{\dagger} \to b^c c^c$

At the early Universe

 $\tilde{d}_i \ , \ \tilde{d}_i^{\dagger}$

Boltzmann distribution

Non-equilibrium decay, preferably

•
$$\tilde{d}_i \to t\mu^-(b\nu)$$

• $\tilde{d}_i^{\dagger} \to b^c c^c$

Inside the LHC

$$\widetilde{d}_i , \ \widetilde{d}_i^{\dagger}$$
 $f_{\text{parton}} \times \widehat{\sigma}_{gg \to \widetilde{d}_i \widetilde{d}_i^{\dagger}}$

Just decay, preferably (Non-equilibrium for surg)

• $d_i \to t\mu^-(b\nu)$

•
$$\tilde{d}_i^{\dagger} \to b^c c^c$$

Baryogenesis once more, at the LHC.

- For simplicity, only consider hadronic top
- Signal: 5 jets + muon
- Charge asymmetry $\sigma_{\mu^-+5j} > \sigma_{\mu^++5j}$

- Cuts:
 - A hard muon and at least three hard jets $p_T(\mu) > 170 \text{ GeV} \quad p_T(j_{1,2}) > 200 \text{ GeV} \quad p_T(j_3) > 150 \text{ GeV}$
 - To reduce the W+jets background

 $\mathrm{MET} < 30~\mathrm{GeV}$

- Main background from QCD: jet faking muon.
 - Fake rate < 10^{-4} ATL-PHYS-PUB-2009-068
- Reconstruct the \tilde{d} , \tilde{d}^{\dagger} peak
 - For each events, find the closest $M(j_1, j_2)$ and M(mu, rest).

14 TeV LHC

Collider constraints

• $\mathcal{L} \simeq \lambda_i'' \bar{b}^c P_R c \tilde{d}_i + \lambda_i' (\bar{t} P_R \mu^c - b P_R \nu^c) \tilde{d}_i$

process	signal	relevant data
$(ar{b}ar{c})(bc)$	4j	
$(t\mu^-)(\bar{t}\mu^+)$	$\mu^+\mu^-2b4j$	Leptoquark
	$\mu^+\mu^-\ell^\pm 2b2j\not\!$	Chargino-
	$\mu^+\mu^-\ell^+\ell'^-2b\not\!\!\!E_T$	Neutralino
$(t\mu^-)(\bar{b}\bar{\nu}), (\bar{t}\mu^+)(b\nu)$	$\mu^{\pm}2b2j\not\!\!\!E_T$	Leptoquark
	$\mu^{\pm}\ell^{\mp}2b\not\!\!\!E_T$	Stop
$(b u)(ar{b}ar{ u}),$	$2b \not\!\!\! E_T$	Sbottom
$(b\nu)(bc), (\bar{b}\bar{\nu})(\bar{b}\bar{c})$	$2b1j \not\!\!\! E_T$	Multijet $+\not\!\!\!E_T$
$(t\mu^-)(bc), (\bar{t}\mu^+)(\bar{b}\bar{c})$	$\mu^{\pm}2b3j$	Our signal
	$\mu^{\pm}\ell^{\mp}2b1jE_T$	

Collider constraints

• $\mathcal{L} \simeq \lambda_i'' \bar{b}^c P_R c \tilde{d}_i + \lambda_i' (\bar{t} P_R \mu^c - b P_R \nu^c) \tilde{d}_i$

Collider constraints

Outline

- Baryogenesis from squark decay
- Collider signatures and constraints
- Embed the baryogenesis scenario into realistic models
 - MSSM with a horizontal symmetry
 - MSSM case
- Summary

• CP violation (re-visit)

• CP violation (re-visit)

$$- \text{ Non-degenerate case } (|m_{\tilde{d}_1} - m_{\tilde{d}_2}| \gg \Gamma_{\tilde{d}})$$

$$\epsilon_1 \text{Br}_1 = \frac{\text{Im}(\lambda_1''\lambda_1'^*\lambda_2'\lambda_2''^*)}{(|\lambda_1''|^2 + |\lambda_1'|^2)(|\lambda_2''|^2 + |\lambda_2'|^2)} F_2(m_{\tilde{d}_2}^2/m_{\tilde{d}_1}^2)$$

$$\downarrow$$

$$\frac{2\Gamma_2}{m_{\tilde{d}_2}} \left[\frac{1}{1-x} - 3 + (2+3x)\log\left(\frac{1+x}{x}\right) \right]$$

$$\sim |\lambda_2|^2 \sim 10^{-12}$$

– A resonance is in need!

• CP violation (re-visit)

$$- \operatorname{Resonant \, case} \quad \left(\left| m_{\tilde{d}_1} - m_{\tilde{d}_2} \right| \approx \Gamma_{\tilde{d}} \right) \\\\ \epsilon_1 \operatorname{Br}_1 = \frac{\operatorname{Im}(\lambda_1''\lambda_1'^*\lambda_2'\lambda_2''^*)}{(|\lambda_1''|^2 + |\lambda_1'|^2)(|\lambda_2''|^2 + |\lambda_2'|^2)} \frac{(m_{\tilde{d}_1} - m_{\tilde{d}_2})(\Gamma_{\tilde{d}_2}/2)}{(m_{\tilde{d}_1} - m_{\tilde{d}_2})^2 + (\Gamma_{\tilde{d}_2}/2)^2} \\$$

• CP violation (re-visit)

$$\begin{split} - \text{ Resonant case } & (|m_{\tilde{d}_1} - m_{\tilde{d}_2}| \approx \Gamma_{\tilde{d}}) \\ \epsilon_1 \text{Br}_1 &= \frac{\text{Im}(\lambda_1''\lambda_1'^*\lambda_2'\lambda_2''^*)}{(|\lambda_1''|^2 + |\lambda_1'|^2)(|\lambda_2''|^2 + |\lambda_2'|^2)} \frac{(m_{\tilde{d}_1} - m_{\tilde{d}_2})(\Gamma_{\tilde{d}_2}/2)}{(m_{\tilde{d}_1} - m_{\tilde{d}_2})^2 + (\Gamma_{\tilde{d}_2}/2)^2} \\ \Gamma_{\tilde{d}} &\sim \lambda^2 \quad \text{ 14 orders smaller than } \quad m_{\tilde{d}} \end{split}$$

– How to generate such a small mass gap naturally?

- SU(2) horizontal symmetry between $ilde{d}_1$, $ilde{d}_2$
 - Explicitly broken only by the RPV interactions
 - Loop induced mass splitting is just comparable to Γ
- In SUSY models, we introduce superfields

 $D_1',D_2',\bar{D}_1',\bar{D}_2'$

• For grand unification, we lift them to vector-like "5" representation in SU(5). Gauge couplints are still perturbative at the Unification scale.

• A spectrum

MSSM

- Can we realize this model in MSSM?
 - Who can be the decaying squarks?
 - $-m_{\tilde{d}_1}^2 m_{\tilde{d}_2}^2 < ({
 m MeV})^2$ requires a tuning
 - Finite temperature correction due to different Yukawa couplings (Higgs thermal loop).

$$(m_1 - m_2)(T) \approx \Delta m_0 + \frac{y_1^2 - y_2^2}{2m_{\tilde{q}_1}M_h} \left(\frac{M_h T}{2\pi}\right)^{3/2} e^{-M_h/T}$$

 Only Yukawa couplings for *d* and *s* are small enough to suppress the thermal effect.

Summary

- We proposed a baryogenesis model, in which the baryon number is generated through the decay of squarks.
- The baryogenesis process "repeates" at the LHC.
- The smoking gun signal is the lepton-charge asymmetry.
- This model can be realized in RPV SUSY models.