Low Energy Probes of PeV Scale Sfermions

Wolfgang Altmannshofer waltmannshofer@perimeterinstitute.ca

Î perimeter Institute

TRIUMF Theory Workshop on Cosmology at Colliders

December 9-11, 2013

Oh SUSY Where Art Thou?

model building effort (~ $1/\Lambda^2$)

model building effort (~ $1/\Lambda^2$)

model building effort (~ $1/\Lambda^2$)

Outline

WA, Roni Harnik, Jure Zupan JHEP **1311**, 202 (2013) [arXiv:1308.3653 [hep-ph]]

- 2 Meson Mixing
- 3 Charged Lepton Flavor Violation
- 4 Electric Dipole Moments
- 5 Implications for Models of Fermion Masses

6 Conclusions

The Mini-Split SUSY Framework

Soft SUSY Breaking

Introduce soft SUSY breaking terms to get a phenomenologically viable spectrum

scalar masses:
$$\frac{1}{M_*^2} \int d^4 \theta(X^{\dagger}X)(\Phi^{\dagger}\Phi)$$

gaugino masses:

$$\frac{1}{M_*}\int d^2\theta \,\mathbf{Y}(W^{\alpha}W_{\alpha})$$

trilinear couplings:

$$\frac{1}{M_*}\int d^2\theta \,\mathbf{Y}(H_u \,\mathbf{Q} U^c)$$

- ► X, Y: hidden sector chiral super-fields with F-term vev's
- no requirements on quantum numbers of X
- Y has to be a singlet (not generically present)
- $\rightarrow\,$ gaugino masses and trilinears generically smaller than scalar masses

(Arkani-Hamed et al. '12)

Wolfgang Altmannshofer (PI)

A "Simply Unnatural" SUSY Spectrum

Hall, Nomura '11 Arvanitaki et al. '12 Arkani-Hamed et al. '12 ...

$$\mathcal{L}_{SB} \supset \frac{1}{M_*^2} \int d^4 \theta(X^{\dagger}X) (\Phi^{\dagger} \Phi + H_u H_d) - \frac{\alpha_i b_i}{4\pi} \frac{m_{3/2}}{2} \lambda_i \lambda_i - \frac{m_{3/2}}{2} \tilde{G} \tilde{G} + \int d^4 \theta(H_u H_d)$$

- scalar masses of the order $F_X/M_* \gtrsim F_X/M_{Pl} \sim m_{3/2}$
- gaugino masses from anomaly mediation, 1-loop factor below the gravitino mass
- small A terms (1-loop suppressed contributions from anomaly mediation)
- Higgsino mass model dependent: could be order gravitino mass or additionally suppressed (breaks Peccei-Quinn symmetry)

The Higgs Mass and the Squark Scale

Arkani-Hamed et al. '12; Giudice, Strumia '11; Hall, Nomura '11; Ibe, Yanagida '11; Kane et al. '11; ...

$$m_h^2 \simeq M_Z^2 \cos^2(2\beta) \\ + \frac{3}{16\pi^2} \frac{m_t^4}{v^2} \frac{\chi_t^2}{m_t^2} \left(1 - \frac{\chi_t^2}{12m_t^2}\right) \\ + \frac{3}{16\pi^2} \frac{m_t^4}{v^2} \log\left(\frac{m_{\tilde{q}}^2}{m_t^2}\right)$$

- $X_t = A_t \mu / \tan \beta$ typically small
- for moderate tan β and scalars at O(100 TeV) – O(1000 TeV) a 125 GeV Higgs is "effortless"
- upper bound on the squark scale from the Higgs mass

New Sources of Flavor and CP Violation

- mini-split SUSY philosophy: no model building effort
- $\rightarrow\,$ generic flavor structure for squarks and sleptons
- parametrization in terms of mass insertions

$$\hat{M}_{ ilde{q}}^2 = m_{ ilde{q}}^2 (\mathbf{1} + \delta_q)$$

 $\hat{M}_{ ilde{\ell}}^2 = m_{ ilde{\ell}}^2 (\mathbf{1} + \delta_\ell)$

- going to sfermion mass eigenstates leads to flavor and CP violating fermion-sfermion-gaugino interactions
- for TeV scale sfermions: SUSY flavor problem
- for 1000 TeV sfermions: generic flavor violation possible

 mass insertion approximation: treat δ's as perturbations and expand to leading order

(in the plots of the talk: $|\delta_{ij}| = 0.3$)

Low Energy Probes of PeV Scale Sfermions

a large host of low energy observables can probe the 0.1 - 1 PeV scale in the near future

Meson Mixing

Charged Lepton

Flavor Violation

Electric Dipole

Moments

Meson Mixing

meson mixing observables probe generic New Physics at very high scales

$$\mathcal{H}_{\mathsf{eff}} = \mathcal{H}_{\mathsf{eff}}^{\mathsf{SM}} + \sum_i rac{m{c}_i}{\Lambda^2} \mathcal{O}_i$$

Operator	Bounds on Λ [TeV] ($C = 1$)		Bounds on $C \ (\Lambda = 1 \text{ TeV})$		Observables	
	Re	Im	Re	Im	Observables	
$(\bar{s}_L \gamma^\mu d_L)^2$	$9.8 imes 10^2$	$1.6 imes 10^4$	$9.0 imes 10^{-7}$	$3.4 imes 10^{-9}$	$\Delta m_K; \epsilon_K$	
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	$1.8 imes 10^4$	$3.2 imes 10^5$	$6.9 imes 10^{-9}$	2.6×10^{-11}	$\Delta m_K; \epsilon_K$	
$(\bar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	$2.9 imes 10^3$	$5.6 imes10^{-7}$	$1.0 imes 10^{-7}$	$\Delta m_D; q/p , \phi_D$	
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	$6.2 imes 10^3$	$1.5 imes 10^4$	$5.7 imes10^{-8}$	$1.1 imes 10^{-8}$	$\Delta m_D; q/p , \phi_D$	
$(\bar{b}_L \gamma^\mu d_L)^2$	$5.1 imes 10^2$	$9.3 imes 10^2$	$3.3 imes 10^{-6}$	$1.0 imes 10^{-6}$	$\Delta m_{B_d}; S_{\psi K_S}$	
$(\bar{b}_R d_L)(\bar{b}_L d_R)$	$1.9 imes 10^3$	$3.6 imes 10^3$	$5.6 imes10^{-7}$	$1.7 imes 10^{-7}$	$\Delta m_{B_d}; S_{\psi K_S}$	
$(\bar{b}_L \gamma^\mu s_L)^2$	$1.1 imes 10^2$	$2.2 imes 10^2$	$7.6 imes10^{-5}$	$1.7 imes 10^{-5}$	$\Delta m_{B_s}; S_{\psi\phi}$	
$(\bar{b}_R s_L)(\bar{b}_L s_R)$	$3.7 imes 10^2$	7.4×10^2	$1.3 imes 10^{-5}$	$3.0 imes 10^{-6}$	$\Delta m_{B_s}; S_{\psi\phi}$	

Isidori, Nir, Perez '10

Kaon Mixing

$$M_{12}^{K} \propto rac{lpha_{s}^{2}}{m_{ ilde{q}}^{2}} \left(\delta_{sd}^{L} \delta_{sd}^{R}
ight)$$

- contributions depend to an excellent approximation only on the squark masses (not on higgsino or gaugino masses)
- scales of several 100 1000 TeV can be probed if relevant phases are not suppressed

WA, Harnik, Zupan '13

Charm Mixing

$$M^D_{12} \propto rac{lpha_s^2}{m_{ ilde{q}}^2} \left(\delta^L_{cu} \delta^R_{cu}
ight)$$

- scales of O(50 TeV) can be probed for O(1) phases
- experimental bounds on CPV in charm mixing can still improve substantially (LHCb and Belle II)

WA, Harnik, Zupan '13

B_d and B_s Mixing

 scales of 20 - 30 TeV can be probed for O(1) phases with improved experimental results on CP violation (LHCb + Belle II)

Wolfgang Altmannshofer (PI)

Charged Lepton Flavor Violation

Charged Lepton Flavor Violation

de Gouvea, Vogel '13

• strongest constraints come from $\mu \rightarrow e$ transitions

$$\begin{array}{rcl} {\sf BR}(\mu \to {\sf e}\gamma) &\leq & 5.7 \times 10^{-13} & @ 90\% \mbox{ C.L.} \\ {\sf BR}(\mu \to 3{\sf e}) &\leq & 1.0 \times 10^{-12} & @ 90\% \mbox{ C.L.} \\ {\sf BR}(\mu \to {\sf e} \mbox{ in Au}) &\leq & 7.0 \times 10^{-13} & @ 90\% \mbox{ C.L.} \end{array}$$

- current limits probe generic NP at 1000 TeV
- bounds can be improved significantly (Mu2e, Mu3e)

SUSY Contributions to $\mu \rightarrow e\gamma$

$$\mathcal{A}_{L,R}^{\tilde{B}} \propto rac{lpha_1}{4\pi} rac{m_{ au}}{m_{\mu}} rac{\mu m_{\tilde{B}}}{m_{\tilde{\ell}}^4} an eta \left(\delta_{\mu au}^{L,R} \delta_{ au e}^{L,R}
ight)$$

► grow linearly with Higgsino mass

$$\mathcal{A}_L^{ ilde W} \propto rac{lpha_2}{4\pi} rac{1}{m_{ ilde \ell}^2} rac{m_{ ilde W}}{\mu} an eta \left(\delta^L_{\mu e}
ight) \log \left(rac{m_{ ilde W}^2}{m_{ ilde \ell}^2}
ight) + \dots$$

ē١

 e_L

- ► Wino loops are log enhanced
- become dominant for small Higgsino masses

ñι

Ĩ H_d

 μ_R

- ¥

Ĥu

Constraints from $\mu \rightarrow \mathbf{e}\gamma$

 scales of 10 TeV - 100 TeV can be probed BR bound can be improved by one order of magnitude with a MEG upgrade

Constraints from $\mu \rightarrow \mathbf{e}\gamma$

 scales of 10 TeV - 100 TeV can be probed BR bound can be improved by one order of magnitude with a MEG upgrade

Constraints from $\mu \rightarrow 3e$

dipole dominance:

$$\frac{\mathsf{BR}(\mu \to 3e)}{\mathsf{BR}(\mu \to e\gamma)} \simeq \frac{\alpha_{\mathsf{em}}}{3\pi} \left(\log \left(\frac{m_{\mu}^2}{m_{e}^2} \right) - \frac{11}{4} \right) \simeq 6 \times 10^{-3}$$

 ultimate sensitivity of Mu3e would be stronger than the bounds from a MEG upgrade

Constraints from $\mu \rightarrow 3e$

dipole dominance:

$$rac{{\sf BR}(\mu o 3e)}{{\sf BR}(\mu o e\gamma)} \simeq rac{lpha_{
m em}}{3\pi} \left(\log \left(rac{m_{\mu}^2}{m_e^2}
ight) - rac{11}{4}
ight) \simeq 6 imes 10^{-3}$$

 ultimate sensitivity of Mu3e would be stronger than the bounds from a MEG upgrade

SUSY Contributions to $\mu \rightarrow e$ Conversion

contributions from dipoles, boxes, Z penguins, and photon penguins

dipoles are dominant for large $\tan\beta$

- usually negligible in mini-split SUSY
- log enhanced for light Higgsinos

 log enhanced for light Winos; typically dominant for low tan β

Constraints from $\mu \rightarrow e$ Conversion

 current constraints are still weak, of order 10's of TeV • Mu2e can improve limits down to BR $\lesssim 10^{-16} - 10^{-17}$

Constraints from $\mu \rightarrow e$ Conversion

 current constraints are still weak, of order 10's of TeV \blacktriangleright Mu2e can improve limits down to BR $\lesssim 10^{-16}-10^{-17}$

Electric Dipole Moments

Flavored EDMs

in the flavor blind case, EDMs are proportional to 1st gen. fermion masses

$$\begin{array}{ll} d_{e} & \propto & \displaystyle \frac{\alpha_{1}}{4\pi} \displaystyle \frac{m_{e}}{m_{\tilde{\ell}}^{2}} \displaystyle \frac{\mu m_{\tilde{B}}}{m_{\tilde{\ell}}^{2}} \tan \beta \\ \\ d_{u} & \propto & \displaystyle \frac{\alpha_{s}}{4\pi} \displaystyle \frac{m_{u}}{m_{\tilde{q}}^{2}} \displaystyle \frac{\mu m_{\tilde{g}}}{m_{\tilde{q}}^{2}} \displaystyle \frac{1}{\tan \beta} \\ \\ \tilde{d}_{u} & \propto & \displaystyle \frac{\alpha_{s}}{4\pi} \displaystyle \frac{m_{u}}{m_{\tilde{q}}^{2}} \displaystyle \frac{\mu m_{\tilde{g}}}{m_{\tilde{q}}^{2}} \displaystyle \frac{1}{\tan \beta} \log \left(\displaystyle \frac{m_{\tilde{g}}^{2}}{m_{\tilde{q}}^{2}} \displaystyle \frac{1}{\max \beta} \right) \\ \end{array}$$

Flavored EDMs

in the flavor blind case, EDMs are proportional to 1st gen. fermion masses

flavor effects strongly enhance EDMs

(see e.g. Hisano, Nagai, Paradisi '08)

in the presence of O(1) sfermion mixing, 1st generation EDMs are proprotional to 3rd generation masses

Wolfgang Altmannshofer (PI)

Parenthesis: Log Resummation

two step matching:

integrate out squarks at $m_{\tilde{q}}$, run down to $m_{\tilde{g}}$ with RGEs, integrate out gluinos at $m_{\tilde{g}}$

 integrating out squarks induces the dipole operators and CP violating 4 fermion operators

$$C_{u\tilde{g}}(m_{\tilde{q}}) = -\frac{1}{2} \frac{m_t}{m_{\tilde{q}}^2} \frac{|\mu m_{\tilde{g}}|}{m_{\tilde{q}}^2} \frac{1}{t_\beta} \left(\delta_{ut}^R \delta_{tu}^L \right) \sin \phi_u$$

 the 4 fermion operator mixes into the chromo dipole operator under renormalization

e.g.
$$O_{q\tilde{g}} = \frac{g_s^2}{m_{\tilde{g}}} \left[(\tilde{q}_{\alpha} \tilde{g}_{a}) (\tilde{\tilde{g}}_{b} \gamma_5 q_{\beta}) + (\tilde{q}_{\alpha} \gamma_5 \tilde{g}_{a}) (\tilde{\tilde{g}}_{b} q_{\beta}) \right] f_{abc} T^a_{\alpha\beta}$$

Parenthesis: Log Resummation

- log is resummed in the renormalization group running from the squark scale down to the gluino scale
- ► large "K factor"

up to \sim 100% correction due to the log resummation

WA, Harnik, Zupan '13 Fuyuto, Hisano, Nagata, Tsumura '13

EDM Constraints

assuming O(1) phases:

electron EDM probes scales of O(50 TeV) hadronic EDMs probe scales of O(100 TeV)

 EDM bounds can be improved by several orders of magnitude!

electron EDM: $d_e \lesssim 10^{-30} ecm$ neutron EDM: $d_n \lesssim 10^{-28} ecm$

EDM Constraints

assuming O(1) phases:

electron EDM probes scales of O(50 TeV) hadronic EDMs probe scales of O(100 TeV)

EDM bounds can be improved by several orders of magnitude!

electron EDM: $d_e \lesssim 10^{-30} ecm$ neutron EDM: $d_n \lesssim 10^{-28} ecm$

2-loop Contributions from Light Higgsinos

 2-loop Barr-Zee diagrams can give sizable contributions to EDMs if both Winos and Higgsinos are light Giudice, Romanino '05

 improved measurements of EDMs probe the mini-split SUSY framework over a broad range of Higgsino masses

WA, Harnik, Zupan '13

2-loop Contributions from Light Higgsinos

 2-loop Barr-Zee diagrams can give sizable contributions to EDMs if both Winos and Higgsinos are light Giudice, Romanino '05

 improved measurements of EDMs probe the mini-split SUSY framework over a broad range of Higgsino masses

Summary of Current Constraints

$|m_{\tilde{B}}| = |m_{\tilde{W}}| = 3 \text{ TeV}, \ |m_{\tilde{g}}| = 10 \text{ TeV}$

- only low energy process that currently probes O(1000 TeV) squarks is CP violation in Kaon mixing
- CP violation in charm mixing and the neutron EDM reach up to O(100 TeV)

assumptions for the plot:

- all relevant mass insertions $|\delta_{ij}| = 0.3$
- ▶ all relevant phases sin φ_i = 1
- no large cancelations between the various contributions

Summary of Future Constraints

 $|m_{\tilde{B}}| = |m_{\tilde{W}}| = 3 \text{ TeV}, \ |m_{\tilde{g}}| = 10 \text{ TeV}$

- neutron EDM (and in general EDMs of hadronic systems) probe squarks at O(1000 TeV)
- ▶ electron EDM and $\mu \rightarrow e$ conversion probe sleptons above 100 TeV

assumptions for the plot:

- all relevant mass insertions $|\delta_{ij}| = 0.3$
- ▶ all relevant phases sin φ_i = 1
- no large cancelations between the various contributions

Implications for Models of Fermion Masses

Radiative Fermion Masses

- generic squark flavor violation can lead to large radiative contributions to light quark masses
- most important effect in the up-quark mass, due to the large top Yukawa Y_t = O(1)

$$\Delta m_{u} = \frac{\alpha_{s}}{4\pi} \frac{8}{9} \frac{m_{\tilde{g}}\mu}{m_{\tilde{q}}^{2}} m_{t} \frac{1}{t_{\beta}} (\delta_{ut}^{L} \delta_{tu}^{R})$$

- ► in mini-split SUSY, gluino mass is ~ 1-loop below the squark masses
- correction is effectively 2-loop and can be just of the right size to generate the up quark mass from SUSY loops
- radiative fermion masses imply lower bounds on the amount of flavor violation

EDMs and Radiative Fermion Masses

 radiatively generated up-quark mass and the up-quark (C)EDM are strongly related

EDMs and Radiative Fermion Masses

 radiatively generated up-quark mass and the up-quark (C)EDM are strongly related

 assuming that the up quark mass comes fully from SUSY loops

$$ilde{d}_u \propto rac{m_u}{m_{ ilde{q}}^2} imes \log\left(rac{m_{ ilde{g}}^2}{m_{ ilde{q}}^2}
ight)$$

Froggatt-Nielsen Models: Fermion Textures

		${\rm ferm./gen.}$	1	2	3
	(Froggatt-Nielsen '79; Leurer, Nir, Seiberg '93, '94)	Q	3	2	0
►	SM fermions are charged under a $U(1)$ flavor symmetry	U	3	1 2	0
►	symmetry is broken by a spurion with charge -1 and size of the Cabbibo angle $\lambda \simeq 0.23$	L L	з З	2	2
	-	Е	5	2	0

induced Yukawa textures of the shown example charges

$$Y_{u} \sim \begin{pmatrix} \lambda^{6} & \lambda^{4} & \lambda^{3} \\ \lambda^{5} & \lambda^{3} & \lambda \\ \lambda^{3} & \lambda & 1 \end{pmatrix} , \qquad Y_{d} \sim \begin{pmatrix} \lambda^{6} & \lambda^{5} & \lambda^{5} \\ \lambda^{5} & \lambda^{4} & \lambda^{4} \\ \lambda^{3} & \lambda^{2} & \lambda^{2} \end{pmatrix} , \qquad Y_{\ell} \sim \begin{pmatrix} \lambda^{8} & \lambda^{5} & \lambda^{3} \\ \lambda^{8} & \lambda^{5} & \lambda^{3} \\ \lambda^{8} & \lambda^{5} & \lambda^{3} \end{pmatrix}$$

ightarrow good description of the observed hierarchies

Froggatt-Nielson Models: Sfermion Textures

the U(1) charges dictate also the flavor structure of the sfermion masses

$$m_{\tilde{q}}^2 \sim \begin{pmatrix} 1 & \lambda & \lambda^3 \\ \lambda & 1 & \lambda^2 \\ \lambda^3 & \lambda^2 & 1 \end{pmatrix} , \qquad m_{\tilde{u}}^2 \sim \begin{pmatrix} 1 & \lambda^2 & \lambda^3 \\ \lambda^2 & 1 & \lambda \\ \lambda^3 & \lambda & 1 \end{pmatrix} , \qquad m_{\tilde{d}}^2 \sim \begin{pmatrix} 1 & \lambda & \lambda \\ \lambda & 1 & 1 \\ \lambda & 1 & 1 \end{pmatrix}$$

$$m_{\tilde{l}}^2 \sim egin{pmatrix} 1 & 1 & 1 \ 1 & 1 & 1 \ 1 & 1 & 1 \end{pmatrix} \ , \qquad m_{\tilde{e}}^2 \sim egin{pmatrix} 1 & \lambda^2 & \lambda^5 \ \lambda^2 & 1 & \lambda^3 \ \lambda^5 & \lambda^3 & 1 \end{pmatrix}$$

 \rightarrow excessive FCNCs for a TeV spectrum

viable Froggatt-Nielsen type models with TeV spectrum require more elaborate flavor symmetries. e.g. $U(1)_1 \times U(1)_2$

for a PeV spectrum, simple U(1) models are viable and might lead to visible effects in Kaon mixing and LFV processes

Conclusions

avoiding model building efforts leads to a mini-split SUSY spectrum:

- ightarrow gauginos at 1 10 TeV
- ightarrow squarks and sleptons at 100 1000 TeV

a 125 GeV Higgs can be easily accommodated

- PeV scale sfermions open up possibilities of explaining the hierachical SM fermion masses
- Iow energy observables can test this framework:

 \rightarrow CP Violation in Kaon mixing probes already the *PeV scale*

 \rightarrow several other observables (charm mixing, EDMs, $\mu \rightarrow$ e in Al) will reach sensitivity to scales of 100 - 1000 TeV in the future