To and From the Hidden Valley

Hidden Sector Parameter Scan

Five Sample Points

(ロ) (同) (三) (三) (三) (○) (○)

Conclusions

LHC Signatures of a Minimal Supersymmetric Hidden Valley arXiv:1112.2705

Yuk Fung Chan¹ Matt Low² David Morrissey³ Andrew Spray³

¹Program in Applied and Computational Mathematics, Princeton University

²Enrico Fermi Institute, University of Chicago

³Theory Group, TRIUMF

TRIUMF Workshop on LHC Results, 16th December 2011

To and From the Hidden Valley

Hidden Sector Parameter Scan

Five Sample Points

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusions

Introduction

Background The Model

To and From the Hidden Valley

MSSM Decays In Hidden Decays Out Collider Objects

Hidden Sector Parameter Scan

Number of HV Jets Presence of Displaced Vertices

Five Sample Points

Overview Collider Signals

To and From the Hidden Valley

Hidden Sector Parameter Scan

Five Sample Points

Conclusions

Helpful Notes on Hidden Valleys

Essential Features of a Hidden Valley:

- New light sector $\mathcal{O}(\text{GeV})$
- New heavy sector $\mathcal{O}(\text{TeV})$
- Feeble SM-light coupling
- Efficient heavy-SM and -light couplings

At LHC, SM \rightarrow Heavy \rightarrow Light \rightarrow SM

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

New, interesting signals BUT! broad, ill-defined model space

To and From the Hidden Valley

Hidden Sector Parameter Scan

Five Sample Points

Conclusions

Simple Review of Supersymmetry

Well-motivated extension of SM

- Symmetry relating fermions \leftrightarrow bosons
- Exception to Coleman-Mandula Theorem
- $\mathcal{O}(\text{TeV})$ -scale partners of SM particles (With opposite spin-statistics)
- Solves hierarchy problem

R-Parity:

- Discrete symmetry: SM Even, New particles Odd
- Added for proton stability, DM
- Characterises SUSY events

ヘロト 人間 とくほ とくほ とう

-

Hidden Sector Parameter Scan

Five Sample Points

Conclusions

Supersymmetric Hidden Valleys A Tasty Blend

What do hidden valleys gain from SUSY?

- Get heavy sector for free
- "Natural" hierarchy of scales
- Concrete implementation

What does supersymmetry gain?

- New phenomenology
- Light sectors in GUTs
- Light dark matter?

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

ъ

To and From the Hidden Valley

Hidden Sector Parameter Scan

Five Sample Points

Conclusions

Supersymmetric Hidden Valleys A Tasty Blend

What do hidden valleys gain from SUSY?

- Get heavy sector for free
- "Natural" hierarchy of scales
- Concrete implementation

What does supersymmetry gain?

- New phenomenology
- Light sectors in GUTs
- Light dark matter?

To and From the Hidden Valley

Hidden Sector Parameter Scan

Five Sample Points

Conclusions

Supersymmetric Hidden Valleys A Tasty Blend

What do hidden valleys gain from SUSY?

- Get heavy sector for free
- "Natural" hierarchy of scales
- Concrete implementation

What does supersymmetry gain?

- New phenomenology
- Light sectors in GUTs
- Light dark matter?

・ロット (雪) (日) (日)

To and From the Hidden Valley

Hidden Sector Parameter Scan

Philosophy

Five Sample Points

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusions

Our point is not that this model is True Our point is that it is Minimal yet Diverse That is, a Benchmark

Hidden Sector Parameter Scan

Five Sample Points

Conclusions

Overview and New Particle Content

New Fields:

- 1. Vector superfield
- 2. Two Higgs superfields

- Starting point: MSSM
- Hidden sector SM-neutral
- Supersymmetric sector-coupling
- Options:
 - Chiral superfield, Higgs portal
 - Vector superfield, kinetic mixing

- 1. Massive vector X_{μ}
- 2. Three real scalars $h_{1,2}^x, A^x$
- 3. Three Majorana fermions $\chi^x_{1,2,3}$

・ コット (雪) (小田) (コット 日)

Hidden Sector Parameter Scan

Five Sample Points

Conclusions

Overview and New Particle Content

New Fields:

- 1. Vector superfield
- 2. Two Higgs superfields

- Starting point: MSSM
- Hidden sector SM-neutral
- Supersymmetric sector-coupling
- Options:
 - Chiral superfield, Higgs portal
 - Vector superfield, kinetic mixing

- 1. Massive vector X_{μ}
- 2. Three real scalars $h_{1,2}^x, A^x$
- 3. Three Majorana fermions $\chi^x_{1,2,3}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Hidden Sector Parameter Scan

Five Sample Points

Conclusions

Overview and New Particle Content

New Fields:

- 1. Vector superfield
- 2. Two Higgs superfields

- Starting point: MSSM
- Hidden sector SM-neutral
- Supersymmetric sector-coupling
- Options:
 - Chiral superfield, Higgs portal
 - Vector superfield, kinetic mixing

- 1. Massive vector X_{μ}
- 2. Three real scalars $h_{1,2}^x, A^x$
- 3. Three Majorana fermions $\chi^x_{1,2,3}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Hidden Sector Parameter Scan

Five Sample Points

Conclusions

Overview and New Particle Content

New Fields:

- 1. Vector superfield
- 2. Two Higgs superfields

- Starting point: MSSM
- Hidden sector SM-neutral
- Supersymmetric sector-coupling
- Options:
 - Chiral superfield, Higgs portal
 - Vector superfield, kinetic mixing

- 1. Massive vector X_{μ}
- 2. Three real scalars $h_{1,2}^x, A^x$
- 3. Three Majorana fermions $\chi^x_{1,2,3}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

To and From the Hidden Valley

Hidden Sector Parameter Scan

Five Sample Points

Conclusions

Kinetic Mixing

$$\mathcal{L} \supset \int \mathsf{d}^{2}\theta \,\frac{\epsilon}{2} B^{\alpha} X_{\alpha}$$

$$\supset \epsilon \left(-\frac{1}{2} B_{\mu\nu} X^{\mu\nu} + \frac{i}{2} \tilde{B}^{\dagger} \bar{\sigma} \cdot \partial \tilde{X} + \frac{i}{2} \tilde{X}^{\dagger} \bar{\sigma} \cdot \partial \tilde{B} + D_{Y} D_{X} \right)$$

$$= X_{\mu} \rightarrow \mathsf{SM}; \qquad \bullet \quad \tilde{B} \rightarrow \mathsf{HV} \qquad \bullet \quad h_{1}^{x} \rightarrow \mathsf{SM}$$

$$\bullet \quad (\mathsf{Rare}) \ Z \rightarrow \mathsf{HV} \qquad \bullet \quad \mathsf{SUSY} \ to \ \mathsf{HV} \qquad \bullet \quad (\mathsf{Rare}) \ \mathsf{Higgs} \rightarrow \mathsf{HV}$$

Possible source:

$$\tilde{X} \longrightarrow \tilde{B}$$

Expect $\epsilon \sim 10^{-2} - 10^{-4}$

To and From the Hidden Valley

Hidden Sector Parameter Scan

Five Sample Points

Conclusions

Kinetic Mixing

$$\mathcal{L} \supset \int \mathsf{d}^{2}\theta \, \frac{\epsilon}{2} B^{\alpha} X_{\alpha}$$

$$\supset \epsilon \left(-\frac{1}{2} B_{\mu\nu} X^{\mu\nu} + \frac{i}{2} \tilde{B}^{\dagger} \bar{\sigma} \cdot \partial \tilde{X} + \frac{i}{2} \tilde{X}^{\dagger} \bar{\sigma} \cdot \partial \tilde{B} + D_{Y} D_{X} \right)$$

• $X_{\mu} \rightarrow \mathsf{SM};$ • $\tilde{B} \rightarrow \mathsf{HV}$ • $h_{1}^{x} \rightarrow \mathsf{SM}$

- (Rare) $Z \rightarrow HV$
- SUSY to HV

• (Rare) Higgs \rightarrow HV

Possible source:

$$\tilde{X} \longrightarrow \tilde{B}$$

Expect $\epsilon \sim 10^{-2} - 10^{-4}$

To and From the Hidden Valley

Hidden Sector Parameter Scan

Five Sample Points

Conclusions

Kinetic Mixing

$$\mathcal{L} \supset \int \mathsf{d}^{2}\theta \,\frac{\epsilon}{2} B^{\alpha} X_{\alpha}$$

$$\supset \epsilon \left(-\frac{1}{2} B_{\mu\nu} X^{\mu\nu} + \frac{i}{2} \tilde{B}^{\dagger} \bar{\sigma} \cdot \partial \tilde{X} + \frac{i}{2} \tilde{X}^{\dagger} \bar{\sigma} \cdot \partial \tilde{B} + D_{Y} D_{X} \right)$$

$$X_{\mu} \rightarrow \mathsf{SM}; \qquad \bullet \quad \tilde{B} \rightarrow \mathsf{HV} \qquad \bullet \quad h_{1}^{x} \rightarrow \mathsf{SM}$$

(Rare) $Z \rightarrow \mathsf{HV} \qquad \bullet \quad \mathsf{SUSY} \text{ to } \mathsf{HV} \qquad \bullet \quad (\mathsf{Rare}) \text{ Higgs} \rightarrow \mathsf{HV}$

Possible source:

$$\tilde{X} \longrightarrow \tilde{B}$$

Expect $\epsilon \sim 10^{-2} - 10^{-4}$

To and From the Hidden Valley

Hidden Sector Parameter Scan

Five Sample Points

Conclusions

Kinetic Mixing

$$\mathcal{L} \supset \int \mathsf{d}^{2}\theta \,\frac{\epsilon}{2} B^{\alpha} X_{\alpha}$$

$$\supset \epsilon \left(-\frac{1}{2} B_{\mu\nu} X^{\mu\nu} + \frac{i}{2} \tilde{B}^{\dagger} \bar{\sigma} \cdot \partial \tilde{X} + \frac{i}{2} \tilde{X}^{\dagger} \bar{\sigma} \cdot \partial \tilde{B} + D_{Y} D_{X} \right)$$

$$\Rightarrow X_{\mu} \rightarrow \mathsf{SM}; \qquad \bullet \quad \tilde{B} \rightarrow \mathsf{HV} \qquad \bullet \quad h_{1}^{x} \rightarrow \mathsf{SM}$$

$$\bullet \quad (\mathsf{Rare}) \ Z \rightarrow \mathsf{HV} \qquad \bullet \quad \mathsf{SUSY} \ to \ \mathsf{HV} \qquad \bullet \quad (\mathsf{Rare}) \ \mathsf{Higgs} \rightarrow \mathsf{HV}$$

Possible source:

$$\tilde{X} \longrightarrow \tilde{B}$$

Expect $\epsilon \sim 10^{-2} - 10^{-4}$

Hidden Sector Parameter Scan

Five Sample Points

Conclusions

The Hidden Sector Lagrangian

New Supersymmetric terms:

$$W = W_{MSSM} - \mu' H H'$$

(plus gauge, Kähler terms $\rightarrow g_x, \epsilon$)

Agnostic SUSY; hidden soft terms generic, real & $\mathcal{O}(\text{GeV})$

$$-\mathcal{L}_{hid,soft} = m_{H}^{2} |H|^{2} + m_{H'}^{2} |H'|^{2} + \left(-b' H H' + \frac{1}{2} M_{x} \tilde{X} \tilde{X} + h.c.\right)$$

7 new parameters $m_x, m_{A^x}, \tan \zeta$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Mixing matrices: Fermion *P*, Scalar *R* (See paper for details)

Hidden Sector Parameter Scan

Five Sample Points

Conclusions

The Hidden Sector Lagrangian

New Supersymmetric terms:

$$W = W_{MSSM} - \mu' H H'$$

(plus gauge, Kähler terms $\rightarrow g_x, \epsilon$)

Agnostic SUSY; hidden soft terms generic, real & $\mathcal{O}(\text{GeV})$

$$-\mathcal{L}_{hid,soft} = m_{H}^{2} |H|^{2} + m_{H'}^{2} |H'|^{2} + \left(-b' H H' + \frac{1}{2} M_{x} \tilde{X} \tilde{X} + h.c.\right)$$

7 new parameters $m_x, m_{A^x}, \tan \zeta$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Mixing matrices: Fermion *P*, Scalar *R* (See paper for details)

Hidden Sector Parameter Scan

Five Sample Points

Conclusions

The Hidden Sector Lagrangian

New Supersymmetric terms:

$$W = W_{MSSM} - \mu' H H'$$

(plus gauge, Kähler terms $\rightarrow g_x, \epsilon$)

Agnostic SUSY; hidden soft terms generic, real & $\mathcal{O}(\text{GeV})$

$$-\mathcal{L}_{hid,soft} = m_{H}^{2} |H|^{2} + m_{H'}^{2} |H'|^{2} + \left(-b' H H' + \frac{1}{2} M_{x} \tilde{X} \tilde{X} + h.c.\right)$$

7 new parameters $m_x, m_{A^x}, \tan \zeta$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Mixing matrices: Fermion *P*, Scalar *R* (See paper for details)

To and From the Hidden Valley

Hidden Sector Parameter Scan

Five Sample Points

Conclusions

The Nature of the LSMP

LSMP: The Lightest SM Partner

: stable without HV (R-Parity)

LSMP decay is dominant HV production.

LSMP can be:

- Sfermion
- Gluino
 - Suppressed decays
 - Possible R hadrons
- Neutralino

・ロト・西ト・西ト・日・ 白・ シック

To and From the Hidden Valley

Hidden Sector Parameter Scan

Five Sample Points

Conclusions

The Nature of the LSMP

LSMP: The Lightest SM Partner

: stable without HV (R-Parity)

LSMP decay is dominant HV production.

LSMP can be:

- Sfermion
- Gluino
 - Suppressed decays
 - Possible R hadrons
- Neutralino

・ロト・「聞・・「思・・「思・・」 しゃくの

To and From the Hidden Valley

Hidden Sector Parameter Scan

Five Sample Points

Conclusions

The Nature of the LSMP

LSMP: The Lightest SM Partner

: stable without HV (R-Parity)

LSMP decay is dominant HV production.

LSMP can be:

- Sfermion
- Gluino
 - Suppressed decays
 - Possible R hadrons
- Neutralino

・ロト・西ト・西ト・日・ 白・ シック・

To and From the Hidden Valley

Hidden Sector Parameter Scan

Five Sample Points

Conclusions

The Nature of the LSMP

LSMP: The Lightest SM Partner

: stable without HV (R-Parity)

LSMP decay is dominant HV production.

LSMP can be:

- Sfermion
- Gluino
 - Suppressed decays
 - Possible R hadrons
- Neutralino

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

-

To and From the Hidden Valley

Hidden Sector Parameter Scan

Five Sample Points

Conclusions

The Nature of the LSMP

LSMP: The Lightest SM Partner

: stable without HV (R-Parity)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

LSMP decay is dominant HV production.

LSMP can be:

- Sfermion
- Gluino
 - Suppressed decays
 - Possible R hadrons
- Neutralino

To and From the Hidden Valley

Hidden Sector Parameter Scan

Five Sample Points

Conclusions

Decays of a Neutralino LSMP

• LSMP decays via kinetic-mixing:

$$\mathcal{L} \supset \sqrt{2}g_x \epsilon \left(H^* \tilde{H} \tilde{B} - H'^* \tilde{H}' \tilde{B}\right)$$

- Decay to fermion + boson
- All seven hidden states accessible (Goldstone boson \rightarrow vector)

Branching Ratios:

$$\tilde{B} \rightarrow \begin{cases} A^{x} + \sum \chi^{x} & 0.25 \\ h_{1}^{x} + \sum \chi^{x} & 0.25 \\ h_{2}^{x} + \sum \chi^{x} & 0.25 \\ X_{\mu} + \sum \chi^{x} & 0.25 \end{cases}$$
Decay Width $\Gamma \sim 10^{-18}$ s.

$$\tilde{B} \rightarrow \begin{cases} \chi_1^x + \sum S^x & |P_{11}|^2 + |P_{12}|^2 \\ \chi_2^x + \sum S^x & |P_{21}|^2 + |P_{22}|^2 \\ \chi_3^x + \sum S^x & |P_{31}|^2 + |P_{32}|^2 \end{cases}$$

To and From the Hidden Valley

Hidden Sector Parameter Scan

Five Sample Points

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Conclusions

The Hidden Vector

- X_{μ} -SM coupling from kinetic mixing \Rightarrow Strength ϵQec_w
- So vector can decay to SM
- Vector produced boosted
 ⇒ Decay products boosted
- Two boosted, collimated quarks/leptons
- BUT! X_μ can also decay to HV
- Hidden decays dominate if allowed

To and From the Hidden Valley

Hidden Sector Parameter Scan

Five Sample Points

Conclusions

The Lightest Hidden Scalar

- h_1^x lightest hidden boson
- Often has no hidden decays
- Can decay to SM:
 - 1. X_{μ} loop
 - 2. Mass mixing with Higgs
- Mass mixing dominates . . .
- ... But still collider-stable

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

-

To and From the Hidden Valley

Hidden Sector Parameter Scan

Five Sample Points

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Conclusions

Other Hidden Sector Particles

- χ_1^x is stable by R-parity
- Other particles usually decay within hidden sector
- Exceptions DO exist:

•
$$A^x \to h_1^x X^*_\mu \to h_1^x f \bar{f}$$

•
$$h_2^x \to A^x X_\mu^* \to A^x f \bar{f}$$

•
$$\chi_2^x \to \chi_1^x X_\mu^* \to \chi_1^x ff$$

• Note: the second implies the first

To and From the Hidden Valley

Hidden Sector Parameter Scan

Five Sample Points

Conclusions

Lepton Jets

- LSMP decay products boosted
- Collimated in angle $\Delta R \sim 1/\gamma \sim m_{hid}/m_{LSMP} \sim 10^{-3}$
- If leptons produced:
 Lepton jet
- If quarks produced: Jet with substructure
- Both case tricky
- Both cases, Two hard subobjects

・ロット (雪) ・ (日) ・ (日)

• Call either an HV Jet

To and From the Hidden Valley

Hidden Sector Parameter Scan

Five Sample Points

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusions

Displaced Vertices

For our values of ϵ and masses

- X_{μ} always prompt
- h_1^x always collider stable

Displaced vertices only from Three Body decays

Can have a range of metastable lifetimes From $c\tau \ll mm - c\tau \gg km$

Obviously, things that leave tracks easier to see

To and From the Hidden Valley

Hidden Sector Parameter Scan

Five Sample Points

Conclusions

Putting it All Together

To and From the Hidden Valley

Hidden Sector Parameter Scan

Five Sample Points

Conclusions

Definition of the Scan

Explore parameter space:

- Scan with log priors
- 20 000 points
- Decay tables:
 - Calculate with BRIDGE
 - Hidden states & LSMP
- Boosts:

 $E_{hid} = m_{LSMP}/2 = 150 \text{ GeV}$

- Particles \rightarrow decay tables
- Find all LSMP final states & branching ratios

Parameter	Range
m_x	(0.1, 10) GeV
m_{A^x}	(0.1, 10) GeV
M_{x}	(0.1, 10) GeV
μ'	\pm (0.1, 10) GeV
$tan \zeta$	(0.1, 10)

Fix:

• $g_x = 0.3$

•
$$\epsilon = 10^{-3}$$

 LSMP: 300 GeV pure Bino

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

To and From the Hidden Valley

Hidden Sector Parameter Scan

Five Sample Points

Conclusions

Number of "HV Jets"

- $\mathcal{P}_B = \sum \tilde{B} \to S^x \to \mathsf{SM}$
- $\mathcal{P}_F = \sum \tilde{B} \to \chi^x \to \mathsf{SM}$

•
$$\mathcal{P}_B \in (0, 0.8)$$

- $\mathcal{P}_F \in (0,1)$
- Obvious structure here.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Hidden Sector Parameter Scan

Five Sample Points

Conclusions

Structure I: Hidden Sector Bosons

Structure in \mathcal{P}_B :

- Favours 0, 0.25, 0.5, 0.75
- Recall: $Br(\tilde{B} \rightarrow S^x) = 0.25$
- 0: $X_{\mu} \rightarrow hidden$
- 0.25: $X_{\mu} \rightarrow SM$
- 0.5: $X_{\mu}, A^x \rightarrow SM$
- 0.75: $X_{\mu}, A^x, h_x^2 \rightarrow SM$
- Note: h_1^x collider stable

Elsewhere: $S^x \rightarrow \chi^x \chi^x$

くしゃ 山田 そ 山本 山本 人口 マイト

Hidden Sector Parameter Scan

Five Sample Points

Conclusions

Structure II: Hidden Sector Fermions

PB

Structure in \mathcal{P}_F :

- Agglomerations at 0, 0.5
- Light Higgsinos:
 - $\chi_2^x \rightarrow h_1^x \chi_1^x$ invisible
 - χ_2^x off-shell visible

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 Heavy Higgsinos Decays to h^x₁, X_µ

To and From the Hidden Valley

Hidden Sector Parameter Scan

Five Sample Points

Conclusions

Structure II: Hidden Sector Fermions

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

o and From the Hidden Valley

Hidden Sector Parameter Scan

Five Sample Points

Conclusions

Structure III: Hidden Sector Fermions & Bosons

Last structure: $\mathcal{P}_B \approx \mathcal{P}_F$

- $\chi_j^x \to S^x \chi_i^x$
- Fermions decay to all scalars

▲□▶▲□▶▲□▶▲□▶ □ のQ@

OR to most scalars

To and From the Hidden Valley

Hidden Sector Parameter Scan

Five Sample Points

Conclusions

Correlations in Hidden Cascades

- Average no. HV Jets $\mathcal{P}_B + \mathcal{P}_F$
- But decays correlated
- Define $C = P_B P_F \tilde{P}_2$
- C, P_B and P_F define Bino decay

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

To and From the Hidden Valley

Hidden Sector Parameter Scan

Five Sample Points

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Conclusions

Long-Lived Bosons

- All Displaced: $X_{\mu} \rightarrow$ hidden
- All Prompt: All two-body
- Mixed: $X_{\mu} \rightarrow SM$, A^x off-shell

To and From the Hidden Valley

Hidden Sector Parameter Scan

Five Sample Points

・ロット (雪) (日) (日)

ъ

Conclusions

Long-Lived Fermions

- All Displaced:
 - χ_2^x off-shell; or
 - $X_{\mu} \rightarrow hidden$
- All Prompt: All two-body
- The rest: off-shell scalars

To and From the Hidden Valley

Hidden Sector Parameter Scan

Five Sample Points

(ロ) (同) (三) (三) (三) (三) (○) (○)

Conclusions

Five Sample Points

Now have overview of parameter space

Select Five points for further study

Selected based on phenomenology, not spectrum:

- 1. Invisible: $\mathcal{P}_B \approx \mathcal{P}_F \approx 0$
- 2. Vector only: $\tilde{B} \to X_{\mu} \to SM$, $\tilde{B} \to \chi^x, S^x$ invisible
- 3. Pure displacement: $X_{\mu} \rightarrow$ hidden, but three-body A^{x}
- 4. Lots of stuff; $\mathcal{P}_B \approx \mathcal{P}_F \approx 0.5$, complex decay chains
- 5. Multiple Displaced; $X_{\mu} \rightarrow SM$, A^x and χ_2^x three-body See paper for parameters, spectra

To and From the Hidden Valley

Hidden Sector Parameter Scan

Five Sample Points

Conclusions

Generating Events

We don't care about MSSM phenomenology

- \Rightarrow Take simplified spectrum:
 - 300 GeV Bino
 - 800 GeV gluino
 - Everything else 2.5 GeV
 - Not ruled out <u>Yet!</u>
- $\mathsf{Model} \Rightarrow \mathsf{FeynRules}, \mathsf{MadGraph}$
 - \Rightarrow 50 000 events $pp \rightarrow \tilde{g}\tilde{g}$ 7 TeV
 - $\sigma \sim 200 \text{ fb}$
 - Everything else irrelevant
 - 4 jets from gluinos + HV cascades

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

ъ

To and From the Hidden Valley

Hidden Sector Parameter Scan

Five Sample Points

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Conclusions

Defining "Collider" Objects

Experimentalists look away now!

A "HV Jet":

- 1. (At least) Two partons, $p_T > 20$ GeV and $\Delta R < 0.1$
- 2. Within $\Delta R < 0.4$, extra $p_T < 3$ GeV
- 3. No distinction between leptons vs quarks, gluons
- 4. No showering, detector resolution effects

A "Jet":

- 1. Not an HV Jet
- **2.** $p_T > 20 \text{ GeV}$
- **3.** Jet Size R = 0.4

o and From the Hidden Valley

Hidden Sector Parameter Scan

Five Sample Points

Conclusions

Tag Efficiencies & Number of (HV) Jets

Point	HV Jet Tag
	Efficiency
HV2	88%
HV3	50%
HV4	62%
HV5	55%

Note: most failed HV jets tagged as jets

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

To and From the Hidden Valley

Hidden Sector Parameter Scan

Five Sample Points

Conclusions

HV Jet p_T

- HV2: hardest HV jets (all from $X_{\mu} \rightarrow f\bar{f}$)
- HV3 notably soft

 (all from A^x → h^x₁ff̄)

(日)

To and From the Hidden Valley

Hidden Sector Parameter Scan

Five Sample Points

Conclusions

Missing Transverse Energy

- More visible \Rightarrow less $\not\!\!E_T$
- Still lots of $\not\!\!E_T$ in all cases

A D > A P > A D > A D >

ъ

To and From the Hidden Valley

Hidden Sector Parameter Scan

Five Sample Points

Conclusions

Missing Transverse Energy

- More visible \Rightarrow less $\not\!\!E_T$
- Still lots of $\not\!\!E_T$ in all cases

A D > A P > A D > A D >

э

To and From the Hidden Valley

Hidden Sector Parameter Scan

Five Sample Points

Conclusions

Displaced Vertices

Again: no detector effects

ヘロト 人間 とくほ とくほ とう

э

 HV5 "double-bump": hint to HV structure?

To and From the Hidden Valley

Hidden Sector Parameter Scan

Five Sample Points

Conclusions

Monojets

Benchmark	Monojet
	Branching Ratio
HV1	0%
HV2	27%
HV3	10%
HV4	18%
HV5	12%

[Used ATLAS LowPT Tags]

 $pp \rightarrow 2 \text{ LSMP} \rightarrow \text{monojets}$

- Irrelevant for Bino LSMP
- Interesting for Wino, Higgsino?
- Possible for all but HV1

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

To and From the Hidden Valley

Hidden Sector Parameter Scan

Five Sample Points

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Conclusions

- MSSM + Higgsed U(1) is Minimal SUSY HV
- Model has Diverse phenomenology: R-Hadrons, displaced vertices, lepton jets, monojets . . .
- It is therefore a possible Benchmark
- We have Scanned HV Parameter Space And studied 5 points in more depth