Threshold Top-Antitop Production at the LHC

Alexander Penin

University of Alberta & TTP Karlsruhe

TRIUMF LHC Workshop

Vancouver, December 2011

Topics discussed

Topics discussed

- Phenomenology of top-antitop threshold production:
 - electron-positron vs hadronic colliders
 - Tevatron vs LHC
 - top mass determination

Topics discussed

Phenomenology of top-antitop threshold production:

- electron-positron vs hadronic colliders
- Tevatron vs LHC
- top mass determination
- Modern theory of threshold production:
 - effective/perturbation theory
 - nonrelativistic renormalization group
 - unstable top

Would be an ideal place to study the top

Would be an ideal place to study the top

Theory:

- Allows for the first principle QCD predictions
- High order results are available (NNNLO is coming!)

Beneke, Penin, Steinhauser, et al.

Would be an ideal place to study the top

Theory:

- Allows for the first principle QCD predictions
- High order results are available (NNNLO is coming!)

Beneke, Penin, Steinhauser, et al.

Phenomenology:

• $m_t, \alpha_s, \Gamma_t, y_t, M_H$

Would be an ideal place to study the top

• Theory:

- Allows for the first principle QCD predictions
- High order results are available (NNNLO is coming!)

Beneke, Penin, Steinhauser, et al.

Phenomenology:

Numerous disadvantages:

- theoretical description is model dependent
- perturbatively known only to NLO
- Iarge experimental background

- Numerous disadvantages:
 - theoretical description is model dependent
 - perturbatively known only to NLO
 - Iarge experimental background
- Big advantage: LHC is operating!

- Numerous disadvantages:
 - theoretical description is model dependent
 - perturbatively known only to NLO
 - Iarge experimental background
- Big advantage: LHC is operating!
- Top mass determination
 - single top reconstraction
 - top-antitop threshold production (new!)

Partonic processes

$$gg \to t\bar{t}({}^{1}S_{0}^{[0]})$$
$$gg \to t\bar{t}({}^{1}S_{0}^{[8]})$$

 $q\bar{q} \rightarrow t\bar{t}({}^3S_1^{[8]})$

Binding effects

Binding effects

Invariant mass distribution

$$^{2}\frac{d}{dM^{2}}\sigma_{pp\to t\bar{t}}(s,M^{2}) \propto \sum_{partons}\sigma_{parton}(M^{2})\int_{M^{2}/s}^{1}\frac{dz}{z}F(z)\mathcal{L}'(M^{2}/zs)$$

$t\bar{t}$ threshold production at the Tevatron

(Kiyo, Kuhn, Moch, Steinhauser, Uwer)

$t\bar{t}$ threshold production at the LHC

(Kiyo, Kuhn, Moch, Steinhauser, Uwer)

$t\bar{t}$ threshold production at the LHC

(Kiyo, Kuhn, Moch, Steinhauser, Uwer)

The top mass from invariant mass distribution

$$M_{\rm res} = 2m_t + E_1 + \delta^{\Gamma_t} E_{\rm res}$$

enin, U of A

TRIUMF 2011 - p. 12/28

Perturbation theory for heavy quarkonium

Apparent slow convergence!

Perturbation theory for heavy quarkonium

- Apparent slow convergence!
- Possible reasons:
 - Renormalons $n!(eta_0lpha_s)^n$
 - Threshold logs

 $\alpha_s^n \ln^m \alpha_s$

Perturbation theory for heavy quarkonium

- Apparent slow convergence!
- Possible reasons:
 - ${\scriptstyle
 m {\scriptstyle I}}$ Renormalons $n! (eta_0 lpha_s)^n$
 - Threshold logs $\alpha_s^n \ln^m \alpha_s$

Full N³LO analysis is mandatory

N³LO ground state energy

(Penin, Steinhauser)

$$\frac{\delta E_1^{\text{N}^3\text{LO}}}{E_1^{\text{LO}}} = \alpha_s^3 \left(58.205 + 15.297 \ln(\alpha_s) + 26.654 \right)$$
Renormalon contribution

N³LO ground state energy

Formula of Success

pNRQCD + Dim.Reg. = N^3LO

Nonrelativistic Effective Theory

(Caswell, Lepage; ...)

Characteristic momentum regions:

Hard Soft (static quarks) Potential (static gluons) Ultrasoft

$p_0 \sim m_q$,	$oldsymbol{p}\sim m_q$
$p_0 \sim v m_q$,	$\boldsymbol{p} \sim v m_q$
$p_0 \sim v^2 m_q$,	$oldsymbol{p} \sim v m_q$
$p_0 \sim v^2 m_q$,	$\boldsymbol{p} \sim v^2 m_q$

Nonrelativistic Effective Theory

(Caswell, Lepage; ...)

Characteristic momentum regions:

Hard	$p_0 \sim m_q$,	$oldsymbol{p} \sim m_q$
Soft (static quarks)	$p_0 \sim v m_q$,	$\boldsymbol{p} \sim v m_q$
Potential (static gluons)	$p_0 \sim v^2 m_q$,	$oldsymbol{p} \sim v m_q$
Ultrasoft	$p_0 \sim v^2 m_q$,	$oldsymbol{p}\sim v^2m_q$

Schrödinger theory & multipole radiation

Nonrelativistic Effective Theory

(Caswell, Lepage; ...)

Characteristic momentum regions:

Hard $p_0 \sim m_q,$ $\boldsymbol{p} \sim m_q$ Soft (static quarks) $p_0 \sim v m_q,$ $\boldsymbol{p} \sim v m_q$ Potential (static gluons) $p_0 \sim v^2 m_q,$ $\boldsymbol{p} \sim v m_q$ Ultrasoft $p_0 \sim v^2 m_q,$ $\boldsymbol{p} \sim v^2 m_q,$

- Schrödinger theory & multipole radiation
- Dynamical degrees of freedom —

Potential NRQCD

(Pineda, Soto; ...)

Schrödinger equation

$$(\mathcal{H} - E) G(\mathbf{r}, \mathbf{r}, E) = \delta(\mathbf{r} - \mathbf{r'})$$

Effective Hamiltonian

$$\mathcal{H} = -\frac{\partial^2}{m_q} + V_{\text{Coulomb}}(\boldsymbol{r}) + \delta \mathcal{H}$$

Aultipole interaction to ultrasoft gluons

$$g_s(\boldsymbol{r}_1-\boldsymbol{r}_2)\cdot\boldsymbol{E}+g_s(\boldsymbol{\sigma}_1-\boldsymbol{\sigma}_2)\boldsymbol{B}+\ldots$$

enin, U of A

Loops in the Effective Theory

Problem: Separation of regions in virtual momentum space

Loops in the Effective Theory

Problem: Separation of regions in virtual momentum space

"...there is a moral here for us. The artificial separation of high and low frequencies, which are handled in different ways, must be avoided"

(Schwinger, Particles, sources and fields, Vol.2)

Loops in the Effective Theory

Regions are separated in dimensional regularization!

Effective theory in dimensional regularization

Pineda, Soto; Beneke, Smirnov; Czarnecki, Melnikov, Yelkhovsky; Kniehl, Penin, Smirnov, Steinhauser)

gauge, Lorenz invariance + automatic matching
ideal for high-order calculations

Spin-flip potential:

$$V_S(\boldsymbol{q}^2) = \frac{4\pi C_F \alpha_s \boldsymbol{S}^2}{3m_q^2}$$

Spin-flip potential:

$$V_{S}(q^{2}) = \frac{4\pi C_{F}\alpha_{s}S^{2}}{3m_{q}^{2}} \left\{ 1 + \frac{\alpha}{\pi} \left[\left(1 + \frac{7}{8} \left(\frac{1}{\epsilon} + \ln \frac{\mu^{2}}{m_{q}^{2}} \right) \right) C_{A} - \frac{1}{2}C_{F} + \frac{6 - 6\ln 2 + i3\pi}{4}T_{F} \right] + \frac{\alpha}{\pi} \left[\left(-\frac{7}{18} - \frac{7}{8} \left(\frac{1}{\epsilon} + \ln \frac{\mu^{2}}{q^{2}} \right) \right) C_{A} - \frac{5}{9}T_{F}n_{l} \right] \right\}$$
hard contribution
CD on-shell on-threshold
mplitude
Coulomb potential:
$$V_{C}(q^{2}) = -\frac{4\pi C_{F}\alpha_{s}(q^{2})}{q^{2}} \left[1 + \frac{\alpha_{s}}{\pi} \left(\frac{31}{36}C_{A} - \frac{5}{9}T_{F}n_{l} \right) \right]$$

Quantum Mechanical PT (potential contribution)

$$\delta^{NLO} E_{\rm hfs} = \langle \psi_n^{\rm Coulomb} | V_S^{\rm 1-loop} | \psi_n^{\rm Coulomb} \rangle + 2 \langle \psi_n^{\rm 1-loop} | V_S^{\rm tree} | \psi_n^{\rm Coulomb} \rangle$$

Quantum Mechanical PT (potential contribution)

$$\delta^{NLO} E_{\rm hfs} = \langle \psi_n^{\rm Coulomb} | V_S^{\rm 1-loop} | \psi_n^{\rm Coulomb} \rangle + 2 \langle \psi_n^{\rm 1-loop} | V_S^{\rm tree} | \psi_n^{\rm Coulomb} \rangle$$

Result for general n

$$\begin{split} E_{\rm hfs}^{NLO}(n) &= \frac{1}{3} \frac{C_F^4 \alpha_s^4}{n^3} m_q \left\{ 1 + \frac{\alpha_s}{\pi} \left[\frac{7 C_A}{4} \ln \left(\frac{C_F \alpha_s}{n} \right) - \frac{C_F}{2} + \frac{3}{2} (1 - \ln 2) T_F \right. \\ &+ \frac{-15 - 11 n + 12 n^2 \Psi_2(n)}{9 n} n_f T_F \right. \\ &+ \frac{393 + 95 n + 126 \gamma_E n + 126 n \Psi_1(n) - 264 n^2 \Psi_2(n)}{72 n} C_A \right] \bigg\} \end{split}$$

(Penin, Steinhauser)

Nonrelativistic Renormalization Group

- Several scales: m_q , $m_q v$, $m_q v^2$
- **•** Logarithmic integrals between the scales $\Rightarrow \ln v \Rightarrow \ln \alpha_s$

Nonrelativistic Renormalization Group

- Several scales: m_q , $m_q v$, $m_q v^2$
- **•** Logarithmic integrals between the scales $\Rightarrow \ln v \Rightarrow \ln \alpha_s$

HFS in NLL approximation

Kniehl, Penin, Pineda, Smirnov, Steinhauser, Phys.Rev.Lett. 92, 242001 (2004)

$$\begin{split} {}_{s}^{LL} &= \frac{C_{F}^{4} \alpha_{s}^{4}(\nu) m_{q}}{3} \left\{ \frac{27}{14} y^{-1} - \frac{13}{14} y^{-\frac{18}{25}} + \frac{\alpha_{s}(m_{q})}{\pi} \left[\left(\frac{1037}{224} + \frac{405086361761 \, \pi^{2}}{25617160800} \right) \right] \\ &\ln 2 \right) \times y^{-1} - \frac{1024 \, \pi^{2}}{143} \, y^{-\frac{39}{50}} - \left(\frac{102973}{26250} + \frac{184336 \, \pi^{2}}{25725} \right) \, y^{-\frac{18}{25}} + \frac{1024 \, \pi^{2}}{675} \, y^{-\frac{1}{2}} + \frac{671 \, \pi^{2}}{1029} \, y^{-\frac{11}{25}} \right] \\ &\frac{\pi^{2}}{23} \, y^{-\frac{2}{25}} + \left(-\frac{13427921}{1260000} + \frac{88057 \, \pi^{2}}{151200} \right) \, y^{\frac{7}{25}} + \frac{4 \, \pi^{2}}{41} \, y^{\frac{16}{25}} + \frac{1377}{56} - \frac{1253587 \, \pi^{2}}{227500} - \frac{629 \, \pi^{2}}{7500} \, y \right] \\ &\frac{873 \, \pi^{2}}{7182} \, y^{\frac{32}{25}} \, _{2}F_{1} \left(\frac{57}{25}, 1; \frac{82}{25}; \frac{y}{2} \right) + \frac{2873 \, \pi^{2}}{3591} \, y^{-1} \, _{2}F_{1} \left(1, 1; \frac{82}{25}; -1 \right) + \left(\frac{675}{28} - \frac{533}{42} \, y^{\frac{7}{25}} \right) \\ &\left(\frac{\mu}{C_{F} \alpha_{s}(\mu) m_{q}} \right) + \frac{85248 \, \pi^{2}}{30625} \, y^{-1} \ln y + \left(-\frac{45834}{4375} \, y^{-1} + \frac{21216}{4375} - \frac{2873}{1575} \, y^{\frac{7}{25}} + \frac{243}{1250} \, y \right) \\ & \frac{2}{\ln(2-y)} \Big] \Big\} \,, \end{split}$$

$$y = \frac{\alpha_s(\mu)}{\alpha_s(m_q)}$$

enin, U of A

• Top decays into W and b with $\Gamma_t \approx 1.5 \text{ GeV}$

- pole of the top propagator moves into the complex plain $E \rightarrow E + i\Gamma_t$
- makes process perturbative in the whole threshold region
- smears out Coulomb resonances

(Fadin, Khoze)

- Beyond the complex energy shift:
 - off-shell contribution $t^* \to Wb$
 - top invariant mass distribution is not exactly Breit-Wigner already at NLO

- Beyond the complex energy shift:
 - off-shell contribution $t^* \to Wb$
 - top invariant mass distribution is not exactly Breit-Wigner already at NLO
 - new scale in the problem $\rho^{1/2}m_t$, with $\rho = 1 \frac{M_W}{m_t}$, $v \ll \rho^{1/2} \ll 1$
 - new effective theory nonrelativistic QCD with $v \to \rho^{1/2}$

(Penin, Piclum, JHEP 2011)

- Beyond the complex energy shift:
 - off-shell contribution $t^* \to Wb$
 - top invariant mass distribution is not exactly Breit-Wigner already at NLO
 - new scale in the problem $\rho^{1/2}m_t$, with $\rho = 1 \frac{M_W}{m_t}$, $v \ll \rho^{1/2} \ll 1$
 - ${\scriptstyle \bullet}$ new effective theory nonrelativistic QCD with $v \rightarrow \rho^{1/2}$

(Penin, Piclum, JHEP 2011)

Summary

Nice things:

- threshold dynamics of heavy quarks is well understood
- toponium resonance may be observed at the LHC
- new perspective of the top mass determination

Summary

Nice things:

- threshold dynamics of heavy quarks is well understood
- toponium resonance may be observed at the LHC
- new perspective of the top mass determination
- Problem:
 - experimental resolution?