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Why extra dimensions must be
large and supersymmetric

w Leo van Nierop

Idea: hep-th/0304256, hep-ph/0404135
mechanism: 1012.2638; 1101.0152; 1108.0345
some implications: 1103.4556; 1108.2553




The message:

» The cosmological constant problem is telling
us that there must be two micron-sized
dimensions (plus possibly more smaller ones)
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The message:

» These dimensions must be supersymmetric
(but need NOT require the MSSM)
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“...when you have eliminated the
Impossible, whatever remains, however
improbable, must be the truth.”

A. Conan Doyle



The message:

» More generally: back-reaction for higher
codimension objects Is a very promising, but
largely unexplored area
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Outline
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 Hierarchy problems in nature
» Cosmological constant: the dog that didn’t bark
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Outline
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* Cosmological constant: the dog that didn’t bark

« How extra dimensions can help
* Why they must be big and supersymmetric
» An explicit realization
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Outline
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* Hierarchy problems in nature
» Cosmological constant: the dog that didn’t bark

* How extra dimensions can help
« Why they must be big and supersymmetric
« An explicit realization

« Opportunities and concerns
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Hierarchy problems



Hierarchy problems

* |deas for what lies beyond the Standard Model
* Th are largely driven by ‘technical naturalness’.

« Motivated by belief SM is an effective field theory.

Lsy = m? H*H + dimensionless

m? = m?_ + higher order ~ (126 GeV)?
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Hierarchy problems

 But the SM has another unnatural parameter
« Even more unnatural than the EW hierarchy.

Lsy = 29 + m*  H*H + dimensionless

o Tl
u? = p? + higher order ~ (3 X 1073 eV)?
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Hierarchy problems

. &

e | Whythis? How do you change properties
of low-energy particles (like the
electron) so that their zero-point
energy does not gravitate, even
though quantum effects do
gravitate in atoms!

Must change only gravity and
not any of their other well-
tested properties.
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Hierarchy problems

JORR PRECIETE - W i ]

° » Where does absence of a technically natural cc
take us as a field?

« Abandon naturalness as a criterion (and along with
It motivations for supersymmetry, technicolour,
etc...)?

e Tk - P
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Extra dimensions
can help



Helpful extra dimensions

» General arguments

« An explicit realization
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Helpful extra dimensions

L L i T i g

» General arguments
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Helpful extra dimensions

L L i T i g

 The Problem:

* G * Einstein’s equations make a lorentz-invariant vacuum
energy (which is generically large) an obstruction to
a close-to-flat spacetime (which we see around us)

Tuv =1 Juv

G,y = 81G Ty,
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Arkani-Hamed et al

Helpful extra dimensions Kachru et
Carroll & Guica
- o e o va s s e con amm Aghababaie et al

 The Problem:

.« G e Einstein’s equations make a lorentz-invariant vacuum
ene
acl

But this need not be true if there are
more than 4 dimensions!!

Tuv =1 Juv

Gy = 871G T,
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Helpful extra dimensions

Vilenkin et al

* Why not?
* Gt * Need not be lorentz invariant in the extra dimensions

 Vacuum energy might curve extra dimensions, rather
than the ones we see (eg gravity field of a cosmic
string)
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Carroll & Guica
Aghababaie et al

Helpful extra dimensions

. &

A higher-dimensional analog:

* G  Similar (classical) examples also with a 4D brane in
two extra dimensions: e.g. the rugby ball and related
solutions
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Rubakov & Shaposhnikov
Polchinski

Helpful extra dimensions

. &

Particles can be localized on
surfaces (branes, or defects)
within the extra dimensions

1alog:

ples also with a 4D brane iIn
g. the rugby ball and related

Gravity IS
not similarly
e | |ocalized
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Helpful extra dimensions

ALz o .+ | Notice: this framework
. | Particles can be localized on manages to modify how
surfaces (branes, or defects) things gravitate without
within the extra dimensions .
strongly modifying

other interactions

Gravity IS
not similarly
e | |ocalized
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Helpful extra dimensions

Chen, Luty & Ponton

o (5

A higher-dimensional analog:

 Similar (classical) examples also with a 4D brane in
two extra dimensions: e.g. the rugby ball and related

solutions

R = —2k?* ETi 6%(x;)

4Dcc=2Ti+2ifd2xR

K2

=0 forall T,
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Adelberger et al

Helpful extra dimensions

+ Ahigher-dimensional . Remarkably: this is
* G . Similar (classical) exam possible If they are

two extra dimensions: ¢, Smaller t_han 45 pm
and particles stuck on

branes

* Requires:
 Radius as large as microns
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Arkani-Hamed et al

Helpful extra dimensions

Remarkably: consistent
with EW hierarchy if
precisely two
dimensions this large
since M, =M1

A higher-dimensional a

* G{ . Similar (classical) exam
two extra dimensions: e

* Requires:
 Radius as large as microns
o At most two dimensions
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CB, de Rham,
van Nierop, Tasinato

Helpful extra dimensions Golberger & Wie

JORR . WTEE . S DGR i ]

« A higher-dimensional a Otherwise bulk cannot

* G . Similar (classical) exam respond to branes. _
two extra dimensions: ¢, 1echnical difficulty:

bulk fields diverge at
brane positions

* Requires:
 Radius as large as microns

. « At most two dimensions

 Back-reaction of the branes
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Aghababaie et al

Helpful extra dimensions

JORR . WTEE . S DGR i ]

- A higher-dimensional a !:O'i Sg_ver?' rg?‘jg_”s’
* G{ . Similar (classical) exam "¢1UdINg fOroicding a
two extra dimensions: e| c0smological constant

In higher dimensions

* Requires:
 Radius as large as microns

o » At most two dimensions

» Back-reaction of the branes

 Supersymmetry in extra dims
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Helpful extra dimensions

L L i T i g

« An explicit realization
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Helpful extra dimensions

JORR | R T DGR e i ]

» Must re-ask the cosmological constant problem:

» Some choices for the branes make the resulting on-
brane geometry flat (classically), but other known
choices do not: must identify the ‘flat’ choices.

N  Once flat choices are made in UV, do they stay made
at the quantum level as successive scales are
Integrated out?
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Helpful extra dimensions

Nishino, Sezgin

» 6D Einstein-Maxwell-scalar system

1
L= 7 [R +(0¢)?] +e~ %P E, ., F™ + V(o)

Two cases (both with flat directions):
o Al

6D sugra: choosea=1and V = ZgR e?
6D axion with SUS¥. a = 0 and V A
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Helpful extra dimensions

Nishino, Sezgin

» 6D Einstein-Maxwell-scalar system

1
L= 7 [R +(0¢)?] +e~ %P E, ., F™ + V(o)

Two cases (both with flat directions):

dS sign
WA J

6D sugra: choosea=1and V = ZgR e?
6D axion with SUS¥. a = 0 and V A
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Helpful extra dimensions

Aghababaie et al

 Exact classical result (for SUSY case): If
ds® = e*" §,, dx*dx" + dr* + e*"db*

N then

N |
R = fdzx Vo

I 2
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Helpful extra dimensions

i | R T DGR e

Aghababaie et al
o amm Gibbons, Guven & Pope

WA

« Exact classical res| In particular,

dSZ ZWA

then

R

Juv

R=0ifn-Vp=0
at the brane positions
dx| (All such solutions
are explicitly known)

1
ﬁfdzx Vz(]b
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Helpful extra dimensions

Carroll & Guica
Aghababaie et al

« Simple solution
ds? = Gpndx™ dx™ + [dr? + a®L? sin? G) d6?]e %o

r
F.g = Qal sin (Z) e~ ¢ = p,
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Carroll & Guica
Aghababaie et al

Helpful extra dimensions

« Simple solution
ds? = Gpndx™ dx™ + [dr? + a®L? sin? G) d6?]e %o

r
F.g = Qal sin (Z) e~ ¢ = p,

T~

Magnetic flux required
to stabilize extra
dimensions against
gravitational collapse
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Carroll & Guica
Aghababaie et al

Helpful extra dimensions

« Simple solution
ds? = Gpndx™ dx™ + [dr? + a?L? sin? G) d6?]e %o

a
F,.9 = Qal sin (Z) e 2P0 b = ¢

W

Labels flat direction
(which exists due to
shift symmetry or scale
Invariance)
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Carroll & Guica
Aghababaie et al

Helpful extra dimensions

« Simple solution
ds? = dx™ dx™ + [dr? + a®L? sin? G) d6?]e %o

r
F.g = Qal sin (Z) e~ ¢ = p,

For later: notice radius
IS exponential in the
flat direction ¢, inthe
SUSY case
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Helpful extra dimensions

« Simple solution (including back-reaction)
ds? = Gpndx™ dx™ + [dr? + a?L? sin ( )d@z]e‘a%

a
F,.9 = Qal sin (Z) e 2P0 b = ¢

k°T
_a=_

2T
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Helpful extra dimensions

Carroll & Guica

« Simple solution (non-SUSY case)

F.o = QalL sin (%)

¢ = Po

Field equations

2
K2 (%+ A)

R = k?%(Q% —2N)

ds? = Gpndx™ dx™ + dr? + a®L? sin? ( )d@z

r
L

Flux quantization

| S

= 2al2Q
g
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Helpful extra dimensions

« Simple solution (non-SUSY case)

ds? = Gpundx™ dx™ + dr? + a®L? sin ( )d@z

T
F,.9 = QaL sin (Z) ¢ = ¢
S— b 2002
Q= Zoa? R = k*(Q? — 2A)
_ 8a?g? . 3n2k*A
[2  3n2k? \ 8a?g?
rRTOWT Dec zo1l




Helpful extra dimensions

« Simple solution (non-SUSY case)
ds? = Gpndx™ dx™ + dr? + a®L? sin? G) do?
T
F,.9 = QaL sin (Z) ¢ = ¢y
Tune Az% soR=0

2

IfT > T+ 6T then R —» —

Tal?

P2 where p = 2 68T
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Helpful extra dimensions

Aghababaie et al

» Simple solution (SUSY case)

Fyo = QalL sin (L) 0 ¢ =g,

Field equations

ds? = Gmndx™ dx™ + [dr? + a*L? sin? (E) df?]e%o

Flux quantization

n 2120 a
— a _——
9 IR
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Helpful extra dimensions

Salam & Sezgin

. &

On-source geometry is always flat.
« Simple solution| Noticed in mid-80s in special case where
= a =1, In which case:

2
ds® = Gmndx L=g|R+ e ?F?+e?]
. 4
Frg = Qal sin (Z with R=—-1/r% and F=1/r?2

gives L = r2e ®?|e?® — 1/7,2]2
29r  Kk°Q* /

n 2120 a
— a _——
9 IR

k?Q%*L*=1 | R=0
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Helpful extra dimensions

* In SUSY case, how does system respond to
changes in brane tension?

n a
Flux quantization: ’ 20L*Q = In Obstructs T to oT
R
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Helpful extra dimensions

* In SUSY case, how does system respond to
changes in brane tension?

n a
Flux quantization: ’ 20L*Q = In Obstructs T to oT
R

 On other hand, general argument:

p=JaV Ly =—55[dV 0%¢ = $dSn-d¢ o g—;
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Helpful extra dimensions

CB & van Nierop

e Resolution: subdominant effects 1n the brane
action are important for flux quantization

if Ly =Tp(P) + Pp(¢p) F +..

fF+_chb €¢

* New function @ has interpretation as brane-
localized flux
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Helpful extra dimensions

L L i T i g

 Energetics of perturbations: explore the ansatz
ds? = e*W g, ,dx™ dx™ + dr? + e*BdO*?

Frg = Qe"~*Y ¢ = ¢(r)
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Helpful extra dimensions

 Perturb brane properties
T - T+ 6T(¢)

 To evade time-dependence add current

ALpyik = J¢ or ALpyik =J

 Find general solution to linearized equations

K21 « 1
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Helpful extra dimensions

« Sample solutions

5¢=¢0+¢111’1(

oW = Wy + W; cos (—

1 — cos(r/L)

sin(r/L)

r
L

) — K?J171n [sin (E)]

)

and so on
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Helpful extra dimensions

P L BRI R i ]

CB, Hoover & Tasinato
Bayntun, CB, van Nierop

» Brane-bulk boundary conditions:

Kz aLb
B 47 —
KZ BLb
Byas! — —
Kz aLb
Bnp'r _ e [ ..
(8 B 1)b T (a¢ +

Constraint: 4U,[2 — 2L, — 3U,] — (

3 dL,

20900

)
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Helpful extra dimensions

« Non-SUSY result:

d L%R
Verr ) = [ S5 [

OB \
b

0
l%zb: 5T, — 06,
This is oL,
while

ST this is not

P
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Helpful extra dimensions

R DT DGR e i ]

e SUSY result:

5T, — 206D, +§%z 5T, — Q5c1>,,

ie Einstein frame potential: V = U(¢)e??

=0
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Helpful extra dimensions

e SUSY result:

29¢

= [8T), — 208d,] = [

5T, — 205, +——z 5T, — Q5c1>,,

29¢

=0

z 5T, — Q5<I>b
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Helpful extra dimensions

e SUSY result:

5T, — 205, +§%z 5T, — chcbb — 0
Agrees with
general result \
given earlier 10 z
= =|-==) 8T, — Q6
p [ 299 4 0Ty — Q0D
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Helpful extra dimensions

 Three Intriguing choices:

Case 1: scale invariant:

if 5T independent of ¢ and §® = Ce~® then V(¢) = Ae??
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Helpful extra dimensions

 Three Intriguing choices:

Case 1: scale invariant:

if 5T independent of ¢ and §® = Ce~® then V(¢) = Ae??

e

As required by Weinberg’s no-go theorem
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Helpful extra dimensions

 Three Intriguing choices:

Case 1: scale invariant:

if 5T independent of ¢ and §® = Ce~® then V(¢) = Ae??

Case 2: exponentially large volume:

6T, =A+ B (¢ +v)?> withv~50then 7 =Le %2>
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Helpful extra dimensions

 Three Intriguing choices:

Case 3: parametrically small vacuum energy:

If brane action completely independent of ¢ then p =20

and ¢, adjusts to satisfy flux guantization condition

jF-I__E(Db €¢
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Helpful extra dimensions

DGR e i ]

WA

W

nat about loops?

Pure brane loops have no effect on curvature
pecause they cannot generate a dilaton
coupling to the brane
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Helpful extra dimensions

IR . R P . ORI e s SR

* What about loops?

« Pure brane loops have no effect on curvature
pecause they cannot generate a dilaton
coupling to the brane

» Each bulk loop comes with a factor of e2?
(since this Is the loop-counting parameter),

* Al but flux stabilization relates this to the radius

by e?2? = 1/r* making the cc equal the KK

scale.
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Helpful extra dimensions

bl R R L SR i g

o | Short-wavelength loops in the bulk (eg particle of mass M)
generate local terms in both the bulk effective action

(D

LB + SLB — lzgR ed) + a1M663¢ + ]
=+ by MYe?? + ---]R
+ e M2e® + - |R? +

[z

and source actions

L, + 6L, = Ty + t;M*e?® + -
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JORR

Helpfu

. | e

e

| extra dimensions

L SR i g

o Short:
both t
®
and s

This generates the following potential as a function of

the zero mode, e? = 1/r?

V(r) = A_M®% + A M* + 2

with A, =qae3% =

and so

Ay

r4

and so on

+ .-

TRIUMF Dec 2011



Opportunities
and concerns



Opportunities & Concerns

» Observational opportunities

 \Where Is the catch?
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Opportunities & Concerns

JORR | R T DGR e i ]

» Observational opportunities
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Opportunities & Concerns

Callin et al

 |f true, many striking implications:

* Deviations from Newton’s inverse square
law at distances of order 1 — 10 microns

* O
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* O

Opportunities & Concerns

EDEE .

L DR e i

Hannestad & Raffelt
CB, Matias & Quevedo

If true, many striking implications:
Micron deviations from inverse square law

Missing energy at the LHC and in
astrophysics: requires M, > 10 TeV

TRIUMF Dec 2011



Opportunities & Concerns

S e R . ORI e s SR

 |f true, many striking implications:
e Micron deviations from inverse square law

« Missing energy at the LHC and in
astrophysics: requires M, > 10 TeV

- Probably a vanilla SM Higgs

- Ol
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Opportunities & Concerns

L DM e M R S LUSt et al

If true, many striking implications:

Micron deviations from inverse square law

Missing energy at the LHC and In
astrophysics: requires M, > 10 TeV

Probably a vanilla SM Higgs
Excited string states (or QG) at the LHC
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Opportunities & Concerns

Lust et al

e O * Are there observable
effects If Mg ~ 10 TeV?

» Must hit new states
before E ~M,.

* eg: string and KK
states (for ‘other 4

dimensions) have
I\/lKK < Ms < Mg
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Opportunities & Concerns

B PR —— CB, Matias & Quevedo

 |f true, many striking implications:

Micron deviations from inverse square law

Missing energy at the LHC and In
astrophysics: requires M, > 10 TeV

Probably a vanilla SM Higgs
Excited string states (or QG) at the LHC
Low energy SUSY without the MSSM
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Opportunities & Concerns

S e R . ORI e s SR CB, MatiaS & Quevedo

 |f true, many striking implications:
e Micron deviations from inverse square law

« Missing energy at the LHC and in
astrophysics: requires M, > 10 TeV

l/- Probably a vanilla SM Higgs
. ‘/ Excited string states (or QG) at the LHC
» Low energy SUSY without the MSSM

- Ol

TRIUMF Dec 2011



Opportunities & Concerns

Albrecht et al

* If true, §;c:aﬁon plications:
> —— Mater
¢ O . E \\ Total Scalar
®
®
° - -0 -8 -6 -4 -2 0
o log p vslog a

« Very light Brans-Dicke-like scalars and
guintessence cosmology
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Opportunities & Concerns

* O

CB & Matias

If true, many striking implications:

co(=1/y/2=58/4) c.(1/vV2—6/4) 0

co(1/2 = 6/4V2) e(1/2+6/4V2) 1/V2

co(1/2 = 6/4v/2) co(1/2 +6/4V2) —1/v/2

Sterile neutrinos from the bulk?
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Opportunities & Concerns

JORR | R T DGR e i ]

 \Where Is the catch?
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Opportunities & Concerns

S Weinberg

If you claim to solve the cosmological
constant problem, aren’t you crazy?
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Opportunities & Concerns

DGR e i ]

If you claim to solve the cosmological
constant problem, aren’t you crazy?

Weinberg’s no-go theorem?
Didn’t we see this all before in 5D?

What about Nima’s argument against x dims

What stops proton decay?
-How Is Inflation possible?

_ong range scalars are unnatural/ruled out?
Don’t constraints already force (1/r)* > cc?

TRIUMF Dec 2011
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Summary

 Brane backreaction is largely unexplored with
more than one transverse dimension:

« Many cool features in 1 dimension (RS models)
 Requires renormalizing singularities at sources
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Summary

IR R et el PR BSR4 P . ORI e s SR

« Many cool features in 1 dimension (RS models)

* Requires renormalizing singularities at sources
« Many intriguing implications:

» Exponentially large dimensions

 Parameterically small on-brane curvatures
» de Sitter solutions to higher dimensional sugra
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Summary

* Brane backreaction is largely unexplored with
more than one transverse dimension:
« Many cool features in 1 dimension (RS models)
 Requires renormalizing singularities at sources

« Many intriguing implications:

- Exponentially large dim Potentially wide-ranging
observational implications

¢ Pal’ametel’lca"y Sma" 0] for Dark Energy Cosm0|ogy’
e de Sitter solutions to h|g the LHC and elsewhere...

TRIUMF Dec 2011



“...when you have eliminated the
Impossible, whatever remains, however
improbable, must be the truth.”

A. Conan Doyle



EDEE .

Opportunities & Concerns

DGR e i ]

If you claim to solve the cosmological
constant problem, aren’t you crazy?

Weinberg’s no-go theorem?
Didn’t we see this all before in 5D?

What about Nima’s argument against x dims

What stops proton decay?
-How Is Inflation possible?

_ong range scalars are unnatural/ruled out?
Don’t constraints already force (1/r)* > cc?

TRIUMF Dec 2011
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Backup slides
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The Worries

L NSO . i DM R e 2 TR

‘Technical Naturalness’

Runaway Behaviour

Stabilizing the Extra Dimensions

Famous No-Go Arguments

Problems with Cosmology

Constraints on Light Scalars
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Cline et al

The Worries Nilles et al

S bl

S— voa Erlich et al

‘Technical N

Runaway Bel

Stabilizing th

Famous NO-(

Problems wit

o Why isnt this killed by what killed 5D
self-tuning?

In 5D models, presence of one brane with
nonzero positive tension T, implied a
singularity in the bulk.

Singularity can be interpreted as presence of
a second brane whose tension T, need be
negative. This is a hidden fine tuning:

T,+T,=0

Constraints on LIgNT SCalars
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The Worries

“Technical N - Why isn t this killed by what killed 5D

Runaway Bel

Stabilizing th

Famous NO-(

Problems wit

Constraints on LIgNT SCalars

self-tu

In 5D n
nonzer
singula

Singuls
a secon
negativ

/\W(X)

\/W(x)

2 With

sence of
ad be
g:
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The Worries

L bl - A L i ]

» ‘Technical N Why isn t this killed by what killed 5D
self-tuning?
¢ R
(I 6D analog corresponds to the Euler -
. . Wi
. ool number topological constraint: 5
L ooz
. Fan 4GZTb ! 4ﬂjd XygR=x sence of
b d be
* Prob crrro e - J
T,+T,=0

e Constraints on LIgNT SCalars
TRIUMF Dec 2011



The Worries

» ‘Technical N Why isn t this killed by what killed 5D

self-tuning?
- R
. 6D analog corresponds to the Euler "
. . Wi
. sl number topological constraint: A
1
: 4 | j “X+/OR =
Fan GZTb A7 d°x gR 4 sence of
i d be
» Prol « Beingtopological, this is preserved -J:

under renormalization. If X'T,
« Con nonzero then R becomes nonzero
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The Worries

L

v lechnical N poinbere s No-Go Theorem:

* Runaway Bel  steven Weinberg has a general objection to

self-tuning mechanisms for solving the

+ Stabilizing t+ cosmological constant problem that are
based on scale invariance

 Famous No-(

 Problems wit

e Constraints on LIgNT SCalars
TRIUMF Dec 2011



The Worries

echnical Ny paoinbere s No-Go Theorem:

Runaway Bel  steven Weinberg has a general objection to
self-tuning mechanisms for solving the

Stabilizing th cosmological constant problem that are
based on scale invariance

Famous No-( B4 Vegr = Aijka bl gk s* wth Flat dic/

Problems wit

Constraints on LIgNT SCalars
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The Worries

echnical Ny paoinbere s No-Go Theorem:

Runaway Bel  steven Weinberg has a general objection to
self-tuning mechanisms for solving the

Stabilizing th cosmological constant problem that are
based on scale invariance

Famous No-( B4 Vegr = Aijka bl gk s* wth Flat dic/

Problems wit

Constraints on LIgNT SCalars
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The Worrie

JORR L DE R R DGR e i ]

» Technical N o Nima 5 No-Go Argument:

* Runaway Bel  One can have a vacuum energy 14 with
greater than the cutoff, provided it is turned

+ Stabilizingth N adiabatically.

So having extra dimensions with r ~ 1/u
does not release one from having to find an
Intrinsically 4D mechanism.

 Famous No-(

 Problems wit

e Constraints on LIgNT SCalars
TRIUMF Dec 2011



The Worries

‘Technical N

Runaway Be

Stabilizing th

* Nima s No-Go Argument:

One can have a vacuum energy ¢/ with u
greater than the cutoff, provided it is turned

on adiabatically.

Prc

Co

» Scale invariance precludes obtaining
Fal greater than the cutoff in an adiabatic way:

Vi = ,U4 e implies ¢2 x ,U4

TRIUMF Dec 2011



The Worries

L NSO . i DM R e 2 TR

‘Technical Naturalness’
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Famous No-Go Arguments

Problems with Cosmology
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‘Technical N

Runaway Bel

Stabilizing th

Famous No-(

Problems wit

Constraints o

Post BBN:

Since r controls Newton’s constant, its
motion between BBN and now will cause

unacceptably large changes to G.
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The Worries

L. : S b W DR i ]

* ‘Technical N " POSt BBN

* Runaway Be Since r controls Newton’s constant, its

motion between BBN and now will cause
. Stabilizing th unacceptably large changes to G.

Even if the kinetic energy associated with r
were to be as large as possible at BBN,
Hubble damping keeps it from rolling

. Problems wit  dangerously far between then and now.

e Famous No-(

e Constraints o
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The Worries

e ‘Technical N

* Runaway Bel

nt, 1ts

nill cause
. Stabilizing th )

ated with r
e Famous No-( \t BBN,

olling
« Problems wit \d now.

e Constraints o log r vs log a
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‘Technical N

Runaway Bel

Stabilizing th

Famous No-(

Problems wit

Constraints o

* Pre BBN:

There are strong bounds on KK modes in
models with large extra dimensions from:

* their later decays into photons;
* their over-closing the Universe;

* their light decay products being too
abundant at BBN
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‘Technical N

Runaway Be

Stabilizing th

Famous No-(

Problems wit

Constraints o

* Pre BBN:

There are strong bounds on KK modes in
models with large extra dimensions from:

* their later decays into photons;
* their over-closing the Universe;

* their light decay products being too
abundant at BBN

Photon bounds can be evaded by having
Invisible channels; others are model
dependent, but eventually must be addressed

TRIUMF Dec 2011
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‘Technical Naturalness’

Runaway Behaviour

Stabilizing the Extra Dimensions

Famous No-Go Arguments

Problems with Cosmology

Constraints on Light Scalars
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‘Technical N

Runaway Bel

Stabilizing th

Famous No-(

Problems wit

Constraints ¢

* Alight scalar with mass m ~ H has
several generic difficulties:

What protects such a small mass from large
guantum corrections?
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The Worries

L. : DI W DR i ]

+lechnical N A light scalar with mass m ~ H has

several generic difficulties:
 Runaway Be

What protects such a small mass from large
» Stabilizing t guantum corrections?

* Famous No-( _ _
Given a potential of the form

V(r) =coM*+ ¢y M?/re+ ¢, Ir* + ..
then ¢, = ¢, = 0 ensures both small mass and
small dark energy.

 Problems wit

e Constraints ¢
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‘Technical N

Runaway Bel

Stabilizing th

Famous No-(

Problems wit

Constraints ¢

* Alight scalar with mass m ~ H has
several generic difficulties:

Isn’t such a light scalar already ruled out by
precision tests of GR iIn the solar system?
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The Worries

L. : DI W DR i ]

+lechnical N A light scalar with mass m ~ H has

several generic difficulties:
 Runaway Be

Isn’t such a light scalar already ruled out by
» Stabilizing t precision tests of GR iIn the solar system?

* Famous No-( The same logarithmic corrections which enter
the potential can also appear in its matter
couplings, making them field dependent and so

* Problems wit :
also time-dependent as ¢ rolls.

Can arrange these to be small here & now.

e Constraints ¢
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The Worries

e ‘Technical N

. ~ H has
* Runaway Bel
uled out by
o Stabilizing th I system?
* Famous No-¢ | which enter
th S matter
C( ndent and so

 Problems wit

d e & now.

« Constraints c
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‘Technical N

Runaway Bel

Stabilizing th

Famous No-(

Problems wit

Constraints ¢

A light scalar with mass m ~ H has

several generic difficulties:

Shouldn’t there be strong bounds due to

energy losses from red giant stars and

supernovae? (Really a bound on LEDs and

not on scalars.)
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‘Technical N

Runaway Be

Stabilizing th

Famous No-(

Problems wit

Constraints ¢

* Alight scalar with mass m ~ H has
several generic difficulties:

Shouldn’t there be strong bounds due to
energy losses from red giant stars and
supernovae? (Really a bound on LEDs and
not on scalars.)

Yes, and this is how the scale M ~ 10 TeV for
gravity in the extra dimensions is obtained.
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Prognosis

JORR O R DGR e i ]

 Theoretical worries

e Observational tests
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The Observational Tests

 Quintessence cosmology
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The Observational Tests

« Quintessence cosmology

- Modifications to gravity Sl
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The Observational Tests

« Quintessence cosmology

« Modifications to gravity

-+ signal

--+ SM Higgs

« Collider physics N
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The Observational Tests

« Quintessence cosmology

« Modifications to gravity

 Collider physics
SUSY broken at the TeV scale,
but not the MSSM!
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The Observational Tests

* Quintessence cosmology
« Modifications to gravity
 Collider physics

 Neutrino physics?
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The Observational Tests

Quintessence cosmology

Modifications to gravity

Collider physics

Neutrino physics?

And more! co(1/2 = 8/4V2) eo(1/2 +5/4V2) —1/2
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Observational Consequences

Quintessence cosmology

Modifications to gravity

Collider physics

Neutrino physics

Astrophysics
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Albrecht, CB, Ravndal & Skordis
Kainulainen & Sunhede

Observational Consequences

R DT DGR e i ]

Quintessence cosmology ¢ Quantumvacuum energy
lifts flat direction.

Modifications to gravity = * SPecific types of scalar
interactions are

predicted.

 Includes the Albrecht-
Skordis type of potential

Neutrino physics * Preliminary studies
Indicate it I1s possible to
have viable cosmology:

* Changing G, BBN; ...

TRIUMF Dec 2011

Collider physics
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Observational Consequences

Quintessence c
Modifications 1
Collider physic
Neutrino physi

Astrophysics

Vv :[a+b|og(rM)+c|ogz(l‘|\/|)](r—14j

Potential domination when:

~0 If rM=exp(al/b)

Canonical Variables:

V =(a+bg+cg’)exp[-Ad]

energy

calar

echt-
tential

es
Ible to

blogy:
V; ...
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Observational Consequences

_ Radiation
Quintessence C \ Matter uum energy

Total Scalar tion.
 of scalar

Modifications 1 N\
\ re

Collider physic

Albrecht-
of potential

tudies
yossible to
osmology:
- BBN: ...

TRIUMF Dec 2011

Neutrino physi

Astrophysics 2 -0 8 6 -4 -2 0
log p vs log a




Observational Consequences

im energy

brecht-
potential

dies
ssible to
w Parameter;: ———— mology:

1 \ B

-2 -10 -8 -6 -4

Total Scalar

TRIUMF Dec 2011




Albrecht, CB, Ravndal & Skordis

Observational Consequences

Quintessence c
Modifications
Collider physic
Neutrino physi

Astrophysics

o Vs log a

uum energy
tion.

, of scalar
\re

Albrecht-
of potential

tudies
yossible to
osmology:
- BBN: ...
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Observational Consequences

* Quintessencec uum energy
tion.
. Modifications |  of scalar
Lre
 Collider physic Albrecht-
of potential
« Neutrino physi tudies
yossible to
« Astrophysics bsmology:
- BBN; ...

log rvs log a
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Observational Consequences

R DT L DR e i

Quintessence cosmology | « At small distances:

* Changes Newton’s Law

 Modifications to gravity atrange r/2z~1 pm.
» At large distances
« Collider physics - Scalar-tensor theory out

to distances of order H,.

Neutrino physics

Astrophysics
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Observational Consequences

 Quintessence cosmology | « At small distances:

o Chanoes Newton’s Law
gerl2z~1 um.
distances

-tensor theory out
ances of order H,.
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Observational Consequences

JORR PR IEDEE DGR e i ]

Quintessence cosmology | « Not the MSSM!
* No superpartners
Modifications to gravity = © Bulkscale bounded by
astrophysics
+ M, ~10 TeV
« Many channels for

| _ losing energy to KK
Neutrino physics modes

 Scalars, fermions,
Astrophysics vectors live in the bulk

Collider physics
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Observational Consequences

Quintessence cosmology ' « Can there be observable
signals if M, ~10 TeV?

 Must hit new states before
E ~M,. Eg: string and KK
states have My < M, <M,

» Dimensionless couplings to

bulk scalars are
unsuppressed by M,

Astrophysics
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Observational Consequences

Azuelos, Beauchemin & CB

S :ajd“x(H*H)CD(x, Y, )

Y

Dimensionless coupling!
0O(0.1-0.001) from loops
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Observational Consequences

: S:ajd“x(H*H)CD(x,yb)

Y

* Dimensionless coupling!
0O(0.1-0.001) from loops

» Use H decay Into yy, ,
o sosearchfortwo  |EEEEEEEEPEEEEEE §
hard photons plus ‘
missing E-.
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Observational Consequences

Table 2. SM backgrounds to the production of bulk scalars in association with the Higgs particle
at ATLAS, their cross-section (for an E7" of 23 GeV) and the total number of events expected at
ATLAS for an integrated luminosity of 100 fb~! (after application of rejection factors).

Processes

° pp — yy (Born)

pp — yy (box)

pp — jet+jet

pp — jet+y

Pp éf?—&jgy

pp — Zh, Wh. tth

Z > oD, W = v, h— yy
pp — Ly L — vi

pp — H;le#r_ﬂ (v

’  Standard Model backgrounds

Cross-section (pb)

56.2
49.0
4.9 % 10°
[.2 x |“5

4.63 x H_]_2

Number of events

5.62 x 10°
4,90 x |l'_]r'--1
2.50 x 10°

|.5U e

4630

250
3.3 x |“§

5.6 x 107
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Observational Consequences

signal
SM Higgs
Irred. Bkg.
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Observational Consequences

g
n

significance (N) = i
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« Significance of signal vs cut on missing E-
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Observational Consequences

Higgs Mass (GeV)
e Possibility of missing-E; cut improves the reach

of the search for Higgs through its yy channel
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Observational Consequences

S — o Matias, CB

Quintessence cosmology < SLED predicts there are
6D massless fermions in
the bulk, as well as their
properties

« Massless, chiral, etc.

« Masses and mixings can
be chosen to agree with
Neutrino physics oscillation data.

e Most difficult: bounds on
resonant SN oscillilations.

Modifications to gravity

Collider physics

Astrophysics
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Observational Consequences

JORR PR IEDEE DGR e i ]

Matias, CB

» 6D supergravities have many bulk fermions: _

* Gravity: (G Wi Bons 2 0)

. » Gauge: (A, 1)

* Hyper: (@, &)

. * Bulk couplings dictated by supersymmetry
* |n particular: 6D fermion masses must vanish

. + Back-reaction removes KK zero modes

* eQ: boundary condition due to conical defect at
o brane position
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Observational Consequences

S :/lujd“x(L‘aHi)Nau(X, Vo )

Y

Dimensionful coupling
A~ 1M,
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Observational Consequences

N S :Aujd“x(LLHi)Nau(X’ Y )

‘ SUSY keeps N massless in bulk;

1~ 1M | Natural mixing with Goldstino on branes;

o Chirality in extra dimensions provides natural L;
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Observational Consequences

N S :Aujd“x(LiaHi)Nau(X’ Y )

ANV AN ANVETC
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Observational Consequences

Constrained by bounds

. . 4 i
S = ﬁujd X(LaH‘ )Na“(x’ yb) on sterile neutrino emission

Dimensionful c N
A~1M, 0 0 0] Av

0 0| v
Require 0 0] 4V

. | observed AV Ay Av| 0

e
masses and - - -
| o ANV AN ANVETC
arge mixing. , , , .

0
0
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Observational Consequences
Matias, CB

« Bounds on sterile neutrinos easiest to satisfy
ifg=Av <104

. « Degenerate perturbation theory implies

massless states strongly mix even if g is

small.

 This Is a problem if there are massless KK
Re modes.

 This Is good for 3 observed flavours.
m:

i Brane back-reaction can remove the KK
o zero mode for fermions.
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Observational Consequences

Matias, CB
 Imagine lepton-
‘ breaking terms are
suppressed.
.  Possibly generated by

loops In running to low
energies from M.

* « Acquire desired masses
and mixings with a
. mild hierarchy for g’/g

and ¢’ /e.
* Build in approximate
’ L.—L,—L,andZ,

S~I\/Igr

TRIUMF Dec 2011
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Observational Consequences

e 1 massless state

2 next- lightest states
have strong overlap
with brane.

. * Inverted hierarchy.

 Massive KK states
. mix weakly:.
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Observational Consequences

e 1 massless state

2 next- lightest states
have strong overlap
with brane.

* Inverted hierarchy.

 Massive KK states
mix weakly:.

Worrisome: once we
choose g ~ 10, good
masses for the light
states require:
eS=k~1/g

Must get this from a
real compactification.
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Observational Consequences

Co(=1/V2 =6/4) c.(1/V2—=46/4) 0O

co(1/2 = 0/4V2) co(1/2+6/4V2) 1/V?2

Cs(1/2 = 8/4V2) co(1/2 4+ 5/4V/2) —1/V2

» Lightest 3 states can have acceptable 3-
flavour mixings.

 Active sterile mixings can satisfy
incoherent bounds provided g ~ 104 or less

(6, ~ g/cy).
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Observational Consequences

R DT DGR e i ]

Quintessence cosmology | « Energy loss into extra
dimensions is close to
existing bounds

 Supernova, red-giant

Modifications to gravity

stars, ...
* Collider physics - Scalar-tensor form for
gravity may have
» Neutrino physics astrophysical
Implications.

* Binary pulsars; ...

Astrophysics
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The Worries
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‘Technical Naturalness’

Runaway Behaviour

Stabilizing the Extra Dimensions

Famous No-Go Arguments

Problems with Cosmology

Constraints on Light Scalars
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The Worrie
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o ‘Technical Naturalness’

« Runaway Behaviour

o Stabilizing the Extra Dimensions
 Famous No-Go Arguments

* Problems with Cosmology

« Constraints on Light Scalars
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The

Worrie
‘Technical N _
 Classical part of the argument:
Runaway Bel « What choices must be made to ensure 4D
flatness?
Stabilizing th
U Quantum part of the argument:
 Are these choices stable against
Famous No- renormalization?
Problems wit

Constraints on LIgNT SCalars
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The Worries

Tolley, CB, Hoover & Aghababaie
Tolley, CB, de Rham & Hoover
CB, Hoover & Tasinato

“Technical N

Runaway Be

Stabilizing th

Famous No-(

Problems wit

+ Classical part of thiii

« \What choices mus
flatness?

Now understand how 2 extra
dimensions respond to presence of 2
branes having arbitrary couplings.

* Not all are flat in 4D, but all of those
having only conical singularities are flat.

(Conical singularities correspond to
absence of dilaton couplings to branes)

Constraints on LIgNT SCalars
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The Worrie

L T s IDE IR R L DR e i

o ‘Technical N
* Quantum part of the argument:

 Are these choices stable against

* Runaway Bel .
renormalization?

o Stabilizing th
R So far so good!!

 Brane loops cannot generate dilaton

* Famous No-( couplings if these are not initially present
 Bulk loops can generate such couplings,
« Problems wit but are suppressed by 6D supersymmetry

 Bulk loops counted by e2? = 1/r*

e Constraints on LIgNT SCalars
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The Worries
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‘Technical Naturalness’

Runaway Behaviour

Stabilizing the Extra Dimensions

Famous No-Go Arguments

Problems with Cosmology

Constraints on Light Scalars
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I he WOrrleS Albrecht, CB, Ravndal, Skordis
Tolley, CB, Hoover & Aghababaie
O ol R BRI IR i BT b R | TOIIey, CB’ de Rham & Hoover

* ‘Technical N _ .
« Most brane properties and initial

conditions do not lead to anything like
the universe we see around us.

e  For many choices the extra dimensions
» Stabilizing tr implode or expand to infinite size.

* Runaway Bel

e Famous No-(

 Problems wit

e Constraints on LIgNT SCalars
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Tolley, CB, Hoover & Aghababaie
- ————— S Tolley, CB, de Rham & Hoover

The WOrrle Albrecht, CB, Ravndal, Skordis

* ‘Technical N _ .
« Most brane properties and initial

conditions do not lead to anything like
the universe we see around us.

e « For many choices the extra dimensions
» Stabilizing tr implode or expand to infinite size.

* |Initial condition problem: much like
 Famous No-(  the Hot Big Bang, possibly
understood by reference to earlier

. Problems wit  €pochs of cosmology (eg: inflation)

* Runaway Bel

e Constraints on LIgNT SCalars
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The Worries
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‘Technical Naturalness’

Runaway Behaviour

Stabilizing the Extra Dimensions

Famous No-Go Arguments

Problems with Cosmology

Constraints on Light Scalars
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The Worrles Salam & Sezgin

L S bl - W i ]

* ‘Technical N _ _ _ _
» Classical flat direction corresponding

to combination of radius and dilaton:

unaway 5€ e’ r2 = constant.

« Stabilizing th _ ] ] ] ]
I Loops lift this flat direction, and in so

doing give dynamics to g and .
e Famous No-( 99 y ¢

 Problems wit

e Constraints on LIgNT SCalars
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The Worries

* “Techn g :[a+b|og(r|v|)+c|ogz(rl\/l)](r—14j

« Runaw Potential domination when:

V'=0 If rM=exp(alb)

« Stabiliz

. Eamou: Canonical Variables:

e Probler

. Constr: V =(a+bg+cg’)exp[-A4]
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The Worries

* “Techn g :[a+b|og(rM)+clogz(r|\/|)](i4J
i

« Runaw Potential domination when:

V'=0 If rM=exp(alb)

 Stabiliz
: _ | Hubble damping can allow
. Famou: Canonical Variables: | potential domination for
exponentially large r, even
oo though r is not stabilized.
« Probler

. Constr: V =(a+bg+cg’)exp[-A4]
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