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“…when you have eliminated the 

impossible, whatever remains, however 

improbable, must be the truth.” 

 
A. Conan Doyle 

 



The message: 

• The cosmological constant problem is telling 

us that there must be two micron-sized 

dimensions (plus possibly more smaller ones) 

• These dimensions must be supersymmetric 

(but need NOT require the MSSM) 

• More generally: back-reaction for higher 

codimension objects is a very promising, but 

largely unexplored area 

TRIUMF Dec 2011 
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Hierarchy problems 

• The electroweak hierarchy 

 

 

 

• The cosmological constant 
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• Ideas for what lies beyond the Standard Model 

are largely driven by ‘technical naturalness’. 

• Motivated by belief  SM is an effective field theory. 

𝐿𝑆𝑀 = 𝑚2
0
𝐻∗𝐻 + 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 

𝑚2 = 𝑚2
0
+ ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 ~ (126 GeV)2 
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• But the SM has another unnatural parameter  

• Even more unnatural than the EW hierarchy. 

𝐿𝑆𝑀 = 𝜇2
0 + 𝑚2

0
 𝐻∗𝐻 + 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 

𝜇2 = 𝜇2
0
+ ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 ~ (3 × 10−3 eV)4 
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• But the SM has another unnatural parameter  

• Even more unnatural than the EW hierarchy. 

𝐿𝑆𝑀 = 𝜇2
0 + 𝑚2

0
 𝐻∗𝐻 + 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 

𝜇2 = 𝜇2
0
+ ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 

 How do you change properties 

of low-energy particles (like the 

electron) so that their zero-point 

energy does not gravitate, even 

though quantum effects do 

gravitate in atoms! 

 

       Must change only gravity and 

not any of their other well-

tested properties. 
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Why this?                     

But not this? 
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• But the SM has another unnatural parameter  

• Even more unnatural than the EW hierarchy. 

𝐿𝑆𝑀 = 𝜇2
0 + 𝑚2

0
 𝐻∗𝐻 + 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 

𝜇2 = 𝜇2
0
+ ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 ~ 3 × 10−3 eV 

• Where does absence of a technically natural cc 

take us as a field?  

• Abandon naturalness as a criterion  (and along with 

it motivations for supersymmetry, technicolour, 

etc…)? 
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Extra dimensions  

can help 
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• The Problem: 

• Einstein’s equations make a lorentz-invariant vacuum 

energy (which is generically large) an obstruction to 

a close-to-flat spacetime (which we see around us)  

𝑇𝜇𝜈 = 𝜆 𝑔𝜇𝜈 

𝐺𝜇𝜈 = 8𝜋𝐺 𝑇𝜇𝜈 
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• The Problem: 

• Einstein’s equations make a lorentz-invariant vacuum 

energy (which is generically large) an obstruction to 

a close-to-flat spacetime (which we see around us)  

𝑇𝜇𝜈 = 𝜆 𝑔𝜇𝜈 

𝐺𝜇𝜈 = 8𝜋𝐺 𝑇𝜇𝜈 

   But this need not be true if there are 

more than 4 dimensions!! 

Arkani-Hamed et al 

Kachru et al 

Carroll & Guica 

Aghababaie et al 



Helpful extra dimensions 

• General arguments 
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• Why not? 

• Need not be lorentz invariant in the extra dimensions 

• Vacuum energy might curve extra dimensions, rather 

than the ones we see (eg gravity field of a cosmic 

string) 

Vilenkin et al 
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• A higher-dimensional analog:  

• Similar (classical) examples also with a 4D brane in 

two extra dimensions: e.g. the rugby ball and related 

solutions 

Carroll & Guica 

Aghababaie et al 



Helpful extra dimensions 

• General arguments 

 

 

 

• An explicit realization 

TRIUMF Dec 2011 

• A higher-dimensional analog:  

• Similar (classical) examples also with a 4D brane in 

two extra dimensions: e.g. the rugby ball and related 

solutions 

    Particles can be localized on 

surfaces (branes, or defects) 

within the extra dimensions 

 

    Gravity is  

    not similarly  

     localized 

Rubakov & Shaposhnikov 

Polchinski 
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• A higher-dimensional analog:  

• Similar (classical) examples also with a 4D brane in 

two extra dimensions: e.g. the rugby ball and related 

solutions 

    Particles can be localized on 

surfaces (branes, or defects) 

within the extra dimensions 

 

    Gravity is  

    not similarly  

     localized 

Notice: this framework 

manages to modify how 

things gravitate without 

strongly modifying 

other interactions 
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• A higher-dimensional analog:  

• Similar (classical) examples also with a 4D brane in 

two extra dimensions: e.g. the rugby ball and related 

solutions 

 

𝑅 = −2𝜅2   𝑇𝑖  𝛿
2 𝑥𝑖  

4D cc =  𝑇𝑖 +
1

2𝜅2  𝑑2𝑥 𝑅 

           = 0  for all Ti 

Chen, Luty & Ponton 
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• A higher-dimensional analog:  

• Similar (classical) examples also with a 4D brane in 

two extra dimensions: e.g. the rugby ball and related 

 

• Requires: 

• Radius as large as microns 

 

Remarkably: this is 

possible if they are 

smaller than 45 m 

and particles stuck on 

branes 

Adelberger et al 
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• A higher-dimensional analog:  

• Similar (classical) examples also with a 4D brane in 

two extra dimensions: e.g. the rugby ball and related 

 

• Requires: 

• Radius as large as microns 

• At most two dimensions 

 

Remarkably: consistent 

with EW hierarchy if 

precisely two 

dimensions this large 

since Mp = Mg
2 r 

Arkani-Hamed et al 
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• A higher-dimensional analog:  

• Similar (classical) examples also with a 4D brane in 

two extra dimensions: e.g. the rugby ball and related 

 

• Requires: 

• Radius as large as microns 

• At most two dimensions 

• Back-reaction of the branes 

 

Otherwise bulk cannot 

respond to branes. 

Technical difficulty: 

bulk fields diverge at 

brane positions 

Golberger & Wise 

CB, de Rham, 

van Nierop, Tasinato 
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• A higher-dimensional analog:  

• Similar (classical) examples also with a 4D brane in 

two extra dimensions: e.g. the rugby ball and related 

 

• Requires: 

• Radius as large as microns 

• At most two dimensions 

• Back-reaction of the branes 

• Supersymmetry in extra dims 

 

For several reasons, 

including forbidding a 

cosmological constant 

in higher dimensions 

Aghababaie et al 
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• An explicit realization 
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• Must re-ask the cosmological constant problem: 

 

• Some choices for the branes make the resulting on-

brane geometry flat (classically), but other known 

choices do not: must identify the ‘flat’ choices. 

 

• Once flat choices are made in UV, do they stay made 

at the quantum level as successive scales are 

integrated out? 



Helpful extra dimensions 

• General arguments 
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• 6D Einstein-Maxwell-scalar system 

Two cases (both with flat directions):  

 

6D sugra: choose a = 1 and 𝑉 =
2𝑔𝑅

2

𝜅2 𝑒𝜙 

6D axion with SUSY:  a = 0 and 𝑉 = 𝜆   

Nishino, Sezgin 
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• 6D Einstein-Maxwell-scalar system 

Two cases (both with flat directions):  

 

6D sugra: choose a = 1 and 𝑉 =
2𝑔𝑅

2

𝜅2 𝑒𝜙 

6D axion with SUSY:  a = 0 and 𝑉 = 𝜆   

Nishino, Sezgin 

dS sign 
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• Exact classical result (for SUSY case): if 

 

   d𝑠2 = 𝑒2𝑊𝑔 𝜇𝜈  𝑑𝑥
𝜇𝑑𝑥𝜈 + 𝑑𝑟2 + 𝑒2𝐵𝑑𝜃2 

     

   then 

𝑅 =
1

𝜅2  𝑑2𝑥 𝛻2𝜙 

Aghababaie et al 
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• Exact classical result (for SUSY case): if 

  

   d𝑠2 = 𝑒2𝑊𝑔 𝜇𝜈  𝑑𝑥
𝜇𝑑𝑥𝜈 + 𝑑𝑟2 + 𝑒2𝐵𝑑𝜃2 

     

   then 

𝑅 =
1

𝜅2  𝑑2𝑥 𝛻2𝜙 

  In particular,  
      𝑅 = 0  if  𝑛 ∙ 𝛻𝜙 = 0  

   at the brane positions 

  (All such solutions   

    are explicitly known) 

Aghababaie et al 

Gibbons, Guven & Pope 
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• General arguments 
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• Simple solution  

Carroll & Guica 

Aghababaie et al 
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• Simple solution  

Magnetic flux required  

to stabilize extra  

dimensions against  

gravitational collapse 

Carroll & Guica 

Aghababaie et al 
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• General arguments 
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• Simple solution  

Labels flat direction 

(which exists due to  

shift symmetry or scale 

invariance) 

Carroll & Guica 

Aghababaie et al 



Helpful extra dimensions 

• General arguments 
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• Simple solution  

For later: notice radius  

is exponential in the  

flat direction f0  in the  

SUSY case 

Carroll & Guica 

Aghababaie et al 
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• General arguments 
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• Simple solution (including back-reaction) 
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• Simple solution (non-SUSY case) 

Field equations Flux quantization 

Carroll & Guica 
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• Simple solution (SUSY case) 

Field equations Flux quantization 

Aghababaie et al 
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• Simple solution (SUSY case) 

Field equations Flux quantization 

Salam & Sezgin 

On-source geometry is always flat. 

Noticed in mid-80s in special case where 

n = a = 1, in which case: 

 

          𝐿 = 𝑔 𝑅 + 𝑒−𝜙𝐹2 + 𝑒𝜙  

 

with  R = −1/𝑟2  and  F = 1/𝑟2 

 

gives  𝐿 =  𝑟2𝑒−𝜙 𝑒𝜙 − 1
𝑟2 

2
  



Helpful extra dimensions 

• General arguments 
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• In SUSY case, how does system respond to 

changes in brane tension? 

Flux quantization: Obstructs T  to dT 
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• In SUSY case, how does system respond to 

changes in brane tension? 

Flux quantization: Obstructs T  to dT 

• On other hand, general argument: 



Helpful extra dimensions 

• General arguments 

 

 

 

• An explicit realization 
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• Resolution: subdominant effects in the brane 

action are important for flux quantization 

• New function F has interpretation as brane-

localized flux 

𝑛

𝑔
=  𝐹 +

1

2𝜋
 Φ𝑏 𝑒

𝜙

𝑏

 

CB & van Nierop 
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• General arguments 
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• Energetics of perturbations: explore the ansatz 
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• Perturb brane properties 

• To evade time-dependence add current 

• Find general solution to linearized equations 



Helpful extra dimensions 

• General arguments 

 

 

 

• An explicit realization 
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• Sample solutions 

and so on 



Helpful extra dimensions 

• General arguments 

 

 

 

• An explicit realization 
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• Brane-bulk boundary conditions: 

CB, Hoover & Tasinato 

Bayntun, CB, van Nierop 
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• Non-SUSY result: 

𝜕

𝜕𝜙
 𝛿𝑇𝑏 − 𝑄𝛿Φ𝑏

𝑏 𝜙∗

= 0 

𝜌 =  𝛿𝑇𝑏 − 2𝑄𝛿Φ𝑏

𝑏 𝜙∗

 

This is dLb  

while  

this is not 
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• SUSY result: 

𝛿𝑇𝑏 − 2𝑄𝛿Φ𝑏 +
1

2

𝜕

𝜕𝜙
 𝛿𝑇𝑏 − 𝑄𝛿Φ𝑏

𝑏 𝜙∗

= 0 
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• SUSY result: 

𝛿𝑇𝑏 − 2𝑄𝛿Φ𝑏 +
1

2

𝜕

𝜕𝜙
 𝛿𝑇𝑏 − 𝑄𝛿Φ𝑏

𝑏 𝜙∗

= 0 

𝜌 = 𝛿𝑇𝑏 − 2𝑄𝛿Φ𝑏 = −
1

2

𝜕

𝜕𝜙
 𝛿𝑇𝑏 − 𝑄𝛿Φ𝑏

𝑏 𝜙∗
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• SUSY result: 

𝛿𝑇𝑏 − 2𝑄𝛿Φ𝑏 +
1

2

𝜕

𝜕𝜙
 𝛿𝑇𝑏 − 𝑄𝛿Φ𝑏

𝑏 𝜙∗

= 0 

𝜌 = 𝛿𝑇𝑏 − 2𝑄𝛿Φ𝑏 = −
1

2

𝜕

𝜕𝜙
 𝛿𝑇𝑏 − 𝑄𝛿Φ𝑏

𝑏 𝜙∗

 

Agrees with  

general result  

given earlier 
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• Three intriguing choices:  

if 𝛿𝑇 independent of 𝜙 and 𝛿Φ = 𝐶𝑒−𝜙 then 

Case 1: scale invariant:  

𝑉(𝜙) = 𝐴𝑒2𝜙 
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• Three intriguing choices:  

if 𝛿𝑇 independent of 𝜙 and 𝛿Φ = 𝐶𝑒−𝜙 then 

Case 1: scale invariant:  

𝑉(𝜙) = 𝐴𝑒2𝜙 

As required by Weinberg’s no-go theorem 



Helpful extra dimensions 

• General arguments 
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• Three intriguing choices:  

if 𝛿𝑇 independent of 𝜙 and 𝛿Φ = 𝐶𝑒−𝜙 then 

Case 1: scale invariant:  

𝑉(𝜙) = 𝐴𝑒2𝜙 

with v ~ 50 then 𝛿𝑇𝑏 = 𝐴 +𝐵 (𝜙 + 𝑣)2 

Case 2: exponentially large volume:  

𝑟 = 𝐿𝑒−𝜙/2 ≫ 𝐿 



Helpful extra dimensions 

• General arguments 
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• Three intriguing choices:  

then If brane action completely independent of 𝜙  

Case 3: parametrically small vacuum energy:  

𝜌 = 0 

and 𝜙∗ adjusts to satisfy flux quantization condition 

 

𝑛

𝑔
=  𝐹 +

1

2𝜋
 Φ𝑏 𝑒

𝜙

𝑏

 



Helpful extra dimensions 

• General arguments 
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• What about loops? 

• Pure brane loops have no effect on curvature 

because they cannot generate a dilaton 

coupling to the brane 
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• What about loops? 

• Pure brane loops have no effect on curvature 

because they cannot generate a dilaton 

coupling to the brane 

• Each bulk loop comes with a factor of 𝑒2𝜙 

(since this is the loop-counting parameter), 

but flux stabilization relates this to the radius 

by 𝑒2𝜙 = 1/𝑟4 making the cc equal the KK 

scale.   
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• What about loops? 

• Pure brane loops have no effect on curvature 

because they cannot generate a dilaton 

coupling to the brane 

• Each bulk loop comes with a factor of 𝑒2𝜙 

(since this is the loop-counting parameter), 

but flux stabilization relates this to the radius 

by 𝑒2𝜙 = 1/𝑟4 making the cc equal the KK 

scale.   

Short-wavelength loops in the bulk (eg particle of mass M) 

generate local terms in both the bulk effective action 

 

 𝐿𝐵 + 𝛿𝐿𝐵 = 
2𝑔𝑅

2

𝜅2 𝑒𝜙 + 𝑎1𝑀
6𝑒3𝜙 +⋯  

       +
1

2𝜅2 + 𝑏1𝑀
4𝑒2𝜙 + ⋯ 𝑅 

          + 𝑐1𝑀
2𝑒𝜙 +⋯ 𝑅2 + ⋯ 

 

and source actions 

 

  𝐿𝑏 + 𝛿𝐿𝑏 = 𝑇0 + 𝑡1𝑀
4𝑒2𝜙 + ⋯ 



Helpful extra dimensions 

• General arguments 

 

 

 

• An explicit realization 

TRIUMF Dec 2011 

• What about loops? 

• Pure brane loops have no effect on curvature 

because they cannot generate a dilaton 

coupling to the brane 

• Each bulk loop comes with a factor of 𝑒2𝜙 

(since this is the loop-counting parameter), 

but flux stabilization relates this to the radius 

by 𝑒2𝜙 = 1/𝑟4 making the cc equal the KK 

scale.   

Short-wavelength loops in the bulk generate local terms in 

both the bulk 

 

 𝐿𝐵 + 𝛿𝐿𝐵 = 
2𝑔𝑅

2

𝜅2 𝑒𝜙 + 𝑎1𝑀
6𝑒3𝜙 +⋯  

       +
1

2𝜅2 + 𝑏1𝑀
4𝑒2𝜙 + ⋯ 𝑅 

          + 𝑐1𝑀
2𝑒𝜙 +⋯ 𝑅2 + ⋯ 

 

and source actions 

 

  𝐿𝑏 + 𝛿𝐿𝑏 = 𝑇0 + 𝑇1𝑒
2𝜙 + ⋯ 

This generates the following potential as a function of 

the zero mode, ef = 1/r2  

 

 𝑉 𝑟 = 𝐴−1𝑀
6𝑟2 + 𝐴0𝑀

4 +
𝐴1𝑀

2

𝑟2 +
𝐴2

𝑟4 + ⋯ 

 

with       𝐴−1 ≅ 𝑎1𝑒
3𝜙 ≅

𝑎1

(𝑀𝑟)6
 ,     

  𝐴0 ≅ 𝑏1𝑒
2𝜙 ≅

𝑏1

(𝑀𝑟)4
 ,  

  𝐴1 ≅ 𝑐1𝑒
𝜙 ≅

𝑐1

(𝑀𝑟)2
             and so on 

 

and so   𝑉 𝑟  ≅  
𝑘

𝑟4 + ⋯ 
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Opportunities & Concerns 

• Observational opportunities 
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• If true, many striking implications: 

• Deviations from Newton’s inverse square 

law at distances of order 1 – 10 microns 

Callin et al 
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Ms 

MKK 

Mg 

• Are there observable 

effects if Mg ~ 10 TeV? 

• Must hit new states 

before  E ~ Mg .  

• eg: string and KK 

states (for „other‟ 4 

dimensions) have     

MKK < Ms < Mg  



Opportunities & Concerns 

• Observational opportunities 

 

 

 

• Where is the catch? 

TRIUMF Dec 2011 

• If true, many striking implications: 

• Micron deviations from inverse square law 

• Missing energy at the LHC and in 

astrophysics:  requires Mg > 10 TeV 

• Probably a vanilla SM Higgs 

• Excited string states (or QG) at the LHC 

• Low energy SUSY without the MSSM 

CB, Matias & Quevedo 



Opportunities & Concerns 

• Observational opportunities 

 

 

 

• Where is the catch? 

TRIUMF Dec 2011 

• If true, many striking implications: 

• Micron deviations from inverse square law 

• Missing energy at the LHC and in 

astrophysics:  requires Mg > 10 TeV  

• Probably a vanilla SM Higgs 

• Excited string states (or QG) at the LHC 

• Low energy SUSY without the MSSM 

CB, Matias & Quevedo 



Opportunities & Concerns 

• Observational opportunities 

 

 

 

• Where is the catch? 

TRIUMF Dec 2011 

• If true, many striking implications: 

• Micron deviations from inverse square law 

• Missing energy at the LHC and in 

astrophysics:  requires Mg > 10 TeV 

• Probably a vanilla SM Higgs 

• Excited string states (or QG) at the LHC 

• Low energy SUSY without the MSSM 

• Very light Brans-Dicke-like scalars and 

quintessence cosmology 

Albrecht et al 



Opportunities & Concerns 

• Observational opportunities 

 

 

 

• Where is the catch? 

TRIUMF Dec 2011 

• If true, many striking implications: 

• Micron deviations from inverse square law 

• Missing energy at the LHC and in 

astrophysics:  requires Mg > 10 TeV  

• Probably a vanilla SM Higgs 

• Excited string states (or QG) at the LHC 

• Low energy SUSY without the MSSM 

• Very light Brans-Dicke-like scalars and 

quintessence cosmology 

• Sterile neutrinos from the bulk? 

CB & Matias 



Opportunities & Concerns 

• Observational opportunities 

 

 

 

• Where is the catch? 

TRIUMF Dec 2011 



Opportunities & Concerns 

• Observational opportunities 

 

 

 

• Where is the catch? 

TRIUMF Dec 2011 

• If you claim to solve the cosmological 

constant problem, aren’t you crazy? 

S Weinberg 



Opportunities & Concerns 

• Observational opportunities 

 

 

 

• Where is the catch? 

TRIUMF Dec 2011 

• If you claim to solve the cosmological 

constant problem, aren’t you crazy? 

• Weinberg’s no-go theorem? 

• Didn’t we see this all before in 5D? 

• What about Nima’s argument against x dims 

• What stops proton decay? 

• How is inflation possible? 

• Long range scalars are unnatural/ruled out? 

• Don’t constraints already force (1/r)4 > cc? 



TRIUMF Dec 2011 

Summary 
 



Summary 

• Brane backreaction is largely unexplored with 

more than one transverse dimension: 

• Many cool features in 1 dimension (RS models) 

• Requires renormalizing singularities at sources 

 

TRIUMF Dec 2011 



Summary 

• Brane backreaction is largely unexplored with 

more than one transverse dimension: 

• Many cool features in 1 dimension (RS models) 

• Requires renormalizing singularities at sources 

• Many intriguing implications: 

• Exponentially large dimensions 

• Parameterically small on-brane curvatures 

• de Sitter solutions to higher dimensional sugra  

 
TRIUMF Dec 2011 



Summary 

• Brane backreaction is largely unexplored with 

more than one transverse dimension: 

• Many cool features in 1 dimension (RS models) 

• Requires renormalizing singularities at sources 

• Many intriguing implications: 

• Exponentially large dimensions 

• Parameterically small on-brane curvatures 

• de Sitter solutions to higher dimensional sugra  

 
TRIUMF Dec 2011 

Potentially wide-ranging  

observational implications  

for Dark Energy cosmology,  

the LHC and elsewhere… 
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impossible, whatever remains, however 

improbable, must be the truth.” 

 
A. Conan Doyle 
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• Being topological, this is preserved 

under renormalization. If S Tb 

nonzero then R becomes nonzero 
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• Nima‟s No-Go Argument:  

 

    One can have a vacuum energy 4 with  
greater than the cutoff, provided it is turned 
on adiabatically.  

 

    So having extra dimensions with r ~ 1/ 
does not release one from having to find an 
intrinsically 4D mechanism. 

 

• Scale invariance precludes obtaining  
greater than the cutoff in an adiabatic way: 

f eVeff

4 implies 42 f 
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• Pre BBN:  

 

    There are strong bounds on KK modes in 
models with large extra dimensions from: 

         * their later decays into photons; 

         * their over-closing the Universe; 

         * their light decay products being too       
 abundant at BBN  

 

    Photon bounds can be evaded by having 
invisible channels; others are model 
dependent, but eventually must be addressed 
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• A light scalar with mass m ~ H has 
several generic difficulties:  

 

    What protects such a small mass from large 
quantum corrections? 

 

     

    Given a potential of the form  

        V(r) = c0 M
4 + c1 M

2/r2 + c2 /r
4 + … 

    then c0 = c1 = 0 ensures both small mass and 
small dark energy. 
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• A light scalar with mass m ~ H has 
several generic difficulties:  

 

    Shouldn’t there be strong bounds due to 
energy losses from red giant stars and 
supernovae? (Really a bound on LEDs and 
not on scalars.) 

 

    Yes, and this is how the scale M ~ 10 TeV for 
gravity in the extra dimensions is obtained. 
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• Specific types of scalar 
interactions are 
predicted. 
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so search for two 
hard photons plus 
missing ET. 



TRIUMF Dec 2011 

Observational Consequences 

• Quintessence cosmology 

 

• Modifications to gravity 

 

• Collider physics 

 

• Neutrino physics 

 

• Astrophysics 

• Not the MSSM! 

• No superpartners 

• Bulk scale bounded by 
astrophysics 

• Mg ~ 10 TeV 

• Many channels for 
losing energy to KK 
modes 

• Scalars, fermions, 
vectors live in the bulk 

Azuelos, Beauchemin & CB 

• Standard Model backgrounds 



TRIUMF Dec 2011 

Observational Consequences 

• Quintessence cosmology 

 

• Modifications to gravity 

 

• Collider physics 

 

• Neutrino physics 

 

• Astrophysics 

• Not the MSSM! 

• No superpartners 

• Bulk scale bounded by 
astrophysics 

• Mg ~ 10 TeV 

• Many channels for 
losing energy to KK 
modes 

• Scalars, fermions, 
vectors live in the bulk 

Azuelos, Beauchemin & CB 



TRIUMF Dec 2011 

Observational Consequences 

• Quintessence cosmology 

 

• Modifications to gravity 

 

• Collider physics 

 

• Neutrino physics 

 

• Astrophysics 

• Not the MSSM! 

• No superpartners 

• Bulk scale bounded by 
astrophysics 

• Mg ~ 10 TeV 

• Many channels for 
losing energy to KK 
modes 

• Scalars, fermions, 
vectors live in the bulk 

Azuelos, Beauchemin & CB 

• Significance of signal vs cut on missing ET 



TRIUMF Dec 2011 

Observational Consequences 

• Quintessence cosmology 

 

• Modifications to gravity 

 

• Collider physics 

 

• Neutrino physics 

 

• Astrophysics 

• Not the MSSM! 

• No superpartners 

• Bulk scale bounded by 
astrophysics 

• Mg ~ 10 TeV 

• Many channels for 
losing energy to KK 
modes 

• Scalars, fermions, 
vectors live in the bulk 

Azuelos, Beauchemin & CB 

• Possibility of missing-ET cut improves the reach 
of the search for Higgs through its gg channel 
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Observational Consequences 

• Quintessence cosmology 

 

• Modifications to gravity 

 

• Collider physics 

 

• Neutrino physics 

 

• Astrophysics 

• SLED predicts there are 
6D massless fermions in 
the bulk, as well as their 
properties 

• Massless, chiral, etc. 

• Masses and mixings can 
be chosen to agree with 
oscillation data. 

• Most difficult: bounds on 
resonant SN oscillilations. 

Matias, CB 
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• Collider physics 

 

• Neutrino physics 

 

• Astrophysics 

• SLED predicts there are 
6D massless fermions in 
the bulk, as well as their 
properties 

• Massless, chiral, etc. 

• Masses and mixings can 
be naturally achieved 
which agree with data!  

• Sterile bounds; 
oscillation experiments; 

• 6D supergravities have many bulk fermions: 

• Gravity: (gmn, ym, Bmn, , j) 

• Gauge: (Am, ) 

• Hyper: (F, x) 

• Bulk couplings dictated by supersymmetry 

• In particular: 6D fermion masses must vanish  

• Back-reaction removes KK zero modes 

• eg: boundary condition due to conical defect at 
brane position  

Matias, CB 
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   baui

i

au yxNHLxdS ,4

 

Dimensionful coupling    

 ~ 1/Mg 

SUSY keeps N massless in bulk; 
 

Natural mixing with Goldstino on branes; 

 

Chirality in extra dimensions provides natural L; 
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Constrained by bounds 

on sterile neutrino emission 

Require 

observed 

masses and 

large mixing. 

• Bounds on sterile neutrinos easiest to satisfy 
if g =  v  < 10-4. 

• Degenerate perturbation theory implies 
massless states strongly mix even if g is 
small. 

• This is a problem if there are massless KK 
modes. 

• This is good for 3 observed flavours. 

• Brane back-reaction can remove the KK 
zero mode for fermions. 

Matias, CB 
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properties 
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be naturally achieved 
which agree with data!  

• Sterile bounds; 
oscillation experiments; 

• Imagine lepton-
breaking terms are 
suppressed. 

• Possibly generated by 
loops in running to low 
energies from Mg.  

• Acquire desired masses 
and mixings with a 
mild hierarchy for g’/g  
and e’/e.

• Build in approximate  
Le – L – L, and Z2 
symmetries. 
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Observational Consequences 

• Quintessence cosmology 

 

• Modifications to gravity 

 

• Collider physics 

 

• Neutrino physics 

 

• Astrophysics 

• SLED predicts there are 
6D massless fermions in 
the bulk, as well as their 
properties 

• Massless, chiral, etc. 

• Masses and mixings can 
be naturally achieved 
which agree with data!  

• Sterile bounds; 
oscillation experiments; 

• 1 massless state 

• 2 next- lightest states 
have strong overlap 
with brane. 

• Inverted hierarchy. 

• Massive KK states 
mix weakly. 

Worrisome: once we 

choose g ~ 10-4, good 

masses for the light 

states require: 

     e S = k ~ 1/g 

 

Must get this from a 

real compactification. 

Matias, CB 
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• Astrophysics 

• SLED predicts there are 
6D massless fermions in 
the bulk, as well as their 
properties 

• Massless, chiral, etc. 

• Masses and mixings can 
be naturally achieved 
which agree with data!  

• Sterile bounds; 
oscillation experiments; 

• Lightest 3 states can have acceptable 3-
flavour mixings. 

• Active sterile mixings can satisfy 
incoherent bounds provided g ~ 10-4 or less 
(qi ~ g/ci). 
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Observational Consequences 

• Quintessence cosmology 

 

• Modifications to gravity 

 

• Collider physics 

 

• Neutrino physics 

 

• Astrophysics 

• Energy loss into extra 
dimensions is close to 
existing bounds 

• Supernova, red-giant 
stars,… 

• Scalar-tensor form for 
gravity may have 
astrophysical 
implications. 

• Binary pulsars;… 
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The Worries 

• „Technical Naturalness‟ 

 

• Runaway Behaviour 

 

• Stabilizing the Extra Dimensions 

 

• Famous No-Go Arguments 

 

• Problems with Cosmology 

 

• Constraints on Light Scalars 

• Classical part of the argument: 

• What choices must be made to ensure 4D 
flatness? 

 Now understand how 2 extra 
dimensions respond to presence of 2 
branes having arbitrary couplings. 

• Not all are flat in 4D, but all of those 
having only conical singularities are flat. 

   (Conical singularities correspond to 
absence of dilaton couplings to branes) 

Tolley, CB, Hoover & Aghababaie 

Tolley, CB, de Rham & Hoover 

CB, Hoover & Tasinato 
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• Stabilizing the Extra Dimensions 

 

• Famous No-Go Arguments 

 

• Problems with Cosmology 

 

• Constraints on Light Scalars 

• Quantum part of the argument: 

• Are these choices stable against 
renormalization? 

 So far so good!! 

• Brane loops cannot generate dilaton 
couplings if these are not initially present 

• Bulk loops can generate such couplings, 
but are suppressed by 6D supersymmetry 

• Bulk loops counted by e2f = 1/r4 
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• Constraints on Light Scalars 

• Most brane properties and initial 
conditions do not lead to anything like 
the universe we see around us. 

• For many choices the extra dimensions 
implode or expand to infinite size. 
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• Problems with Cosmology 

 

• Constraints on Light Scalars 

• Most brane properties and initial 
conditions do not lead to anything like 
the universe we see around us. 

• For many choices the extra dimensions 
implode or expand to infinite size. 

• Initial condition problem: much like 
the Hot Big Bang, possibly 
understood by reference to earlier 
epochs of cosmology (eg: inflation) 

Albrecht, CB, Ravndal, Skordis  

Tolley, CB, Hoover & Aghababaie 

Tolley, CB, de Rham & Hoover 
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The Worries 

• ‘Technical Naturalness’ 

 

• Runaway Behaviour 

 

• Stabilizing the Extra Dimensions 

 

• Famous No-Go Arguments 

 

• Problems with Cosmology 

 

• Constraints on Light Scalars 

• Classical flat direction corresponding 
to combination of radius and dilaton:              
  ef r2 = constant. 

 

• Loops lift this flat direction, and in so 
doing give dynamics to f and r. 

Salam & Sezgin 
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• Constraints on Light Scalars ]exp[)( 2 fff  cbaV
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Potential domination when: 

Canonical Variables: 

Kantowski & Milton 

Albrecht, CB, Ravndal, Skordis  

CB & Hoover 

Ghilencea, Hoover, CB & Quevedo 
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Potential domination when: 

Canonical Variables: 

Albrecht, CB, Ravndal, Skordis  

    Hubble damping can allow 
potential domination for 
exponentially large r, even 
though r is not stabilized. 


