Dark Matter @ Colliders

David-fest 2011

Roni Harnik, Fermilab

Bai, Fox, RH - 1005.3797 Fox, RH, Kopp, Tsai - 1103.0240 Fox, RH, Kopp, Tsai - 1109.4389

Very related work by the "Irvine Clan":

Goodman, Ibe, Rajaraman, Shepherd, Tait and Haibo Yu -1005.1286 Goodman, Ibe, Rajaraman, Shepherd, Tait and Haibo Yu - 1008.1783 Fortin and Tait - 1103.3289

Rajaraman, Shepherd, Tait and Wijangco - 1108.1196 Shepherd and Goodman - 1111.2359

Dark Matter needs no introduction.

But it has a lot to answer for:

- * What sets its abundance?
- * Does it interact with matter apart from gravity?
- * How strong/weak are these interactions?

- * Does it fit into a larger framework?
- * What is the particle mediating this interaction?

But it has a lot to answer for:

- * What sets its abundance?
- * Does it interact with matter apart from gravity?
- * How strong/weak are these interactions?

Answers (and limits) come from direct & indirect searches.

Directly complemented by past and present colliders.

- * Does it fit into a larger framework?
- * What is the particle mediating this interaction?

But it has a lot to answer for:

- * What sets its abundance?
- * Does it interact with matter apart from gravity?
- * How strong/weak are these interactions?

Answers (and limits) come from direct & indirect searches.

Directly complemented by past and present colliders.

- * Does it fit into a larger framework?
- * What is the particle mediating this interaction?

Outline

- * Motivation: Colliders as direct detection experiments.
- * Tevatron & LHC mono-jets:
 - Rough estimates.
 - Operators
 - Results
- * LEP mono-photons.
- * Scattering via the Higgs & LHC Higgs searches.
- * Coffee.

The WIMP Hint

- Does DM have interactions with matter?
- * If we throw a weakly interacting particle with weak

scale mass into the primordial hot soup,

the DM abundance comes out roughly right.

Hint: There is an interaction.

Leads to pb-ish cross sections

Probes of DM Interactions

* We hope to probe dark matter in several ways:

DM-nucleus scattering

DM annihilation

Focus on direct detection in this talk. (a similar game can be played for indirect)

Direct detection

- * Direct detection places limits on
- $\bigcap_{q}^{\mathrm{DM}}$
- * Heroic effort with remarkable results.
- * DD has some weaknesses.

Direct detection

* Direct detection places limits on

- * Heroic effort with remarkable results.
- * DD has some weaknesses.

Direct detection

- * Direct detection places limits on
- $\bigcap_{q}^{\mathrm{DM}}$
- * Heroic effort with remarkable results.
- * DD has some weaknesses.

* DM experiments and colliders are often said to be related in a specific framework (SUSY).

"XENON100 is starting to probe the MSSM's pseudopod, LHC killed the Membrane, but the ectoplasm is still safe." [submitted to nature]

* In order to get a particular DM-nucleon cross

section,

, we assume the existence of

a DM-hadron interaction,

* The same interaction can lead to DM production at a hadron machine.

 $p\bar{p} \rightarrow \text{nothing}$

* In order to get a particular DM-nucleon cross

section,

, we assume the existence of

a DM-hadron interaction,

* The same interaction can lead to DM production at a hadron machine.

* Mono-jet searches can place limits on the direct detection plane.

* These are **conservative** limits.

In a specific model there may be other ways to produce DM, e.g. through cascades from heavy colored states.

But mono-jet are certainly

* Mono-jet searches can place limits on the plane.

not have a low energy threshold

The collider does

not pay a price

for spin dependence

Cross Sections

* The direct detection cross section ($q \sim 100 \text{ MeV}$):

$$\sigma_{\rm DD} \sim g_{\chi}^2 g_q^2 \frac{\mu^2}{M^4} \qquad \qquad \mu = \frac{m_{\chi} m_N}{m_N + m_{\chi}}$$

$$\mu = \frac{m_{\chi} m_N}{m_N + m_{\chi}}$$

* Mono-jet + E_T ($q \sim 10 - 100 \; {\rm GeV}$):

$$M \lesssim 100 \; \mathrm{GeV}$$

$$M \gtrsim 100 \text{ GeV}$$

Consider a heavy mediator: $assume \ p_T < M \ (just \ a \ contact \ operator)$

Consider a heavy mediator: $assume \ p_T < M \ (just \ a \ contact \ operator)$

$$\sigma_{1j} \sim \alpha_s g_{\chi}^2 g_q^2 \frac{p_T^2}{M^4}$$

 $(p_T \sim 100 \, \mathrm{GeV})$

Consider a heavy mediator: $assume \ p_T < M \ (just \ a \ contact \ operator)$

$$\sigma_{1j} \sim \alpha_s g_{\chi}^2 g_q^2 \frac{p_T^2}{M^4}$$
 $\sigma_{DD} \sim g_{\chi}^2 g_q^2 \frac{\mu^2}{M^4}$ $(p_T \sim 100 \, \text{GeV})$ $(\mu \sim 1 \, \text{GeV})$

Consider a heavy mediator: $assume \ p_T < M \ (just \ a \ contact \ operator)$

$$\sigma_{1j} \sim \alpha_s g_{\chi}^2 g_q^2 \frac{p_T^2}{M^4}$$
 $\sigma_{DD} \sim g_{\chi}^2 g_q^2 \frac{\mu^2}{M^4}$ $(p_T \sim 100 \, \text{GeV})$ $(\mu \sim 1 \, \text{GeV})$

$$\frac{\sigma_{1j}}{\sigma_{DD}} \sim \mathcal{O}(1000)$$

Front of an Envelope:

Front of an Envelope:

In 1 fb-1 CDF saw 8449 mono-jet $\Rightarrow \sigma_{1j} \lesssim 500\,\mathrm{fb}$ events, expected 8663 \pm 332

$$\sqrt{\sigma_{DD}} \lesssim 0.5 \,\text{fb} = 5 \times 10^{-40} \text{cm}^2$$

The Limit

* Estimated limits from a back of the envelope recasting an old CDF study:

Sets best limit below ~5GeV.

Best limit dependent DM detector.

CDF Limits:

* CDF did a dedicated shape analysis of monojet spectra.

A Search For Dark Matter in the Monojet + Missing Transverse Energy Signature in 6.7 fb⁻¹

S.Z. Shalhout¹, T. Schwarz², R. Erbacher¹, J. Conway¹, P. Fox², R. Harnik², Y. Bai² UC Davis¹ Fermilab²

A neural net with our name on it ?! :-0

In the rest of the talk:

How is the translation from Colliders done?

What can LHC say? What did LEP say?

What assumptions are made?

Operators

* Describe DM interactions as higher DM operators (possibly mediated by light mediators)

$$\begin{split} \mathcal{O}_V &= \frac{(\bar{\chi}\gamma_\mu\chi)(\bar{q}\gamma^\mu q)}{\Lambda^2}\,, & \text{SI, vector exchange} \\ \mathcal{O}_A &= \frac{(\bar{\chi}\gamma_\mu\gamma_5\chi)(\bar{q}\gamma^\mu\gamma_5q)}{\Lambda^2}\,, & \text{SD, axial-vector exchange} \\ \mathcal{O}_t &= \frac{(\bar{\chi}P_Rq)(\bar{q}P_L\chi)}{\Lambda^2} + (L \leftrightarrow R)\,, & \text{SI (or SD), t-channel} \end{split}$$

 $\mathcal{O}_g = \alpha_s \frac{(\bar{\chi}\chi) \left(G^a_{\mu\nu} G^{a\mu\nu}\right)}{^{\Lambda 3}}$

SI, vector exchange

SD, axial-vector exchange

SI gluon operator

Which Cuts?

* ATLAS's Ifb analysis employs 3 sets of cuts

LowPT Selection requires $E_T > 120$ GeV, one jet with $p_T(j_1) > 120$ GeV, $|\eta(j_1)| < 2$, and events are vetoed if they contain a second jet with $p_T(j_2) > 30$ GeV and $|\eta(j_2)| < 4.5$.

HighPT Selection requires $E_T > 220$ GeV, one jet with $p_T(j_1) > 250$ GeV, $|\eta(j_1)| < 2$, and events are vetoed if there is a second jet with $|\eta(j_2)| < 4.5$ and with either $p_T(j_2) > 60$ GeV or $\Delta \phi(j_2, E_T) < 0.5$. Any further jets with $|\eta(j_2)| < 4.5$ must have $p_T(j_3) < 30$ GeV.

veryHighPT Selection requires $E_T > 300$ GeV, one jet with $p_T(j_1) > 350$ GeV, $|\eta(j_1)| < 2$, and events are vetoed if there is a second jet with $|\eta(j_2)| < 4.5$ and with either $p_T(j_2) > 60$ GeV or $\Delta \phi(j_2, E_T) < 0.5$. Any further jets with $|\eta(j_2)| < 4.5$ must have $p_T(j_3) < 30$ GeV.

	ATLAS LowPT	ATLAS HighPT	ATLAS veryHighPT
	$1.0 \; {\rm fb^{-1}}$	$1.0 \; {\rm fb^{-1}}$	$1.0 \; {\rm fb^{-1}}$
Expected	15100 ± 700	1010 ± 75	193 ± 25
Observed	15740	965	167

Which has most sensitivity?

Which Cuts?

* ATLAS's Ifb analysis employs 3 sets of cuts

LowPT Selection requires $E_T > 120$ GeV, one jet with $p_T(j_1) > 120$ GeV $|\eta(j_1)| < 2$, and events are vetoed if they contain a second jet with $p_T(j_2) > 30$ GeV and $|\eta(j_2)| < 4.5$.

HighPT Selection requires $E_T > 220$ GeV, one jet with $p_T(j_1) > 250$ GeV, $|\eta(j_1)| < 2$, and events are vetoed if there is a second jet with $|\eta(j_2)| < 4.5$ and with either $p_T(j_2) > 60$ GeV or $\Delta \phi(j_2, E_T) < 0.5$. Any further jets with $|\eta(j_2)| < 4.5$ must have $p_T(j_3) < 30$ GeV.

veryHighPT Selection requires $E_T > 300$ GeV, one jet with $p_T(j_1) > 350$ GeV, $|\eta(j_1)| < 2$, and events are vetoed if there is a second jet with $|\eta(j_2)| < 4.5$ and with either $p_T(j_2) > 60$ GeV or $\Delta \phi(j_2, E_T) < 0.5$. Any further jets with $|\eta(j_2)| < 4.5$ must have $p_T(j_3) < 30$ GeV.

	ATLAS LowPT	ATLAS HighPT	ATLAS veryHighPT
	$1.0 \; {\rm fb^{-1}}$	$1.0 \; {\rm fb^{-1}}$	$1.0 \; {\rm fb^{-1}}$
Expected	15100 ± 700	1010 ± 75	193 ± 25
Observed	15740	965	167

Which has most sensitivity?

Which Cuts?

* ATLAS's Ifb analysis employs 3 sets of cuts

LowPT Selection requires $E_T > 120$ GeV, one jet with $p_T(j_1) > 120$ GeV $|\eta(j_1)| < 2$, and events are vetoed if they contain a second jet with $p_T(j_2) > 30$ GeV and $|\eta(j_2)| < 4.5$.

HighPT Selection requires $E_T > 220$ GeV, one jet with $p_T(j_1) > 250$ GeV, $|\eta(j_1)| < 2$, and events are vetoed if there is a second jet with $|\eta(j_2)| < 4.5$ and with either $p_T(j_2) > 60$ GeV or $\Delta \phi(j_2, E_T) < 0.5$. Any further jets with $|\eta(j_2)| < 4.5$ must have $p_T(j_3) < 30$ GeV.

veryHighPT Selection requires $E_T > 300$ GeV, one jet with $p_T(j_1) > 350$ GeV, $|\eta(j_1)| < 2$, and events are vetoed if there is a second jet with $|\eta(j_2)| < 4.5$ and with either $p_T(j_2) > 60$ GeV or $\Delta \phi(j_2, E_T) < 0.5$. Any further jets with $|\eta(j_2)| < 4.5$ must have $p_T(j_3) < 30$ GeV.

	ATLAS LowPT	ATLAS HighPT	ATLAS veryHighPT
	$1.0 \; {\rm fb^{-1}}$	$1.0 \; {\rm fb^{-1}}$	$1.0 \; {\rm fb^{-1}}$
Expected	15100 ± 700	1010 ± 75	193 ± 25
Observed	15740	965	167

Which has most sensitivity?

Which Cuts?

* ATLAS's Ifb analysis employs 3 sets of cuts

LowPT Selection requires $E_T > 120$ GeV, one jet with $p_T(j_1) > 120$ GeV $|\eta(j_1)| < 2$, and events are vetoed if they contain a second jet with $p_T(j_2) > 30$ GeV and $|\eta(j_2)| < 4.5$.

HighPT Selection requires $E_T > 220$ GeV, one jet with $p_T(j_1) > 250$ GeV, $|\eta(j_1)| < 2$, and events are vetoed if there is a second jet with $|\eta(j_2)| < 4.5$ and with either $p_T(j_2) > 60$ GeV or $\Delta \phi(j_2, E_T) < 0.5$. Any further jets with $|\eta(j_2)| < 4.5$ must have $p_T(j_3) < 30$ GeV.

veryHighPT Selection requires $\not\!\!E_T > 300$ GeV, one jet with $|p_T(j_1) > 350$ GeV, $|\eta(j_1)| < 2$, and events are vetoed if there is a second jet with $|\eta(j_2)| < 4.5$ and with either $p_T(j_2) > 60$ GeV or $\Delta \phi(j_2, \not\!\!E_T) < 0.5$. Any further jets with $|\eta(j_2)| < 4.5$ must have $p_T(j_3) < 30$ GeV.

	ATLAS LowPT	ATLAS HighPT	ATLAS veryHighPT
	$1.0 \; {\rm fb^{-1}}$	$1.0 \; {\rm fb^{-1}}$	$1.0 \; {\rm fb^{-1}}$
Expected	15100 ± 700	1010 ± 75	193 ± 25
Observed	15740	965	167

Which has most sensitivity?

Hard cuts are better.

Limits on
$$\Lambda \equiv \frac{M}{\sqrt{g_{\chi}g_1}}$$
:

* Set 90% CL limits:
$$\chi^2 \equiv \frac{[\Delta_N - N_{\rm DM}(m_\chi, \Lambda)]^2}{N_{\rm DM}(m_\chi, \Lambda) + N_{\rm SM} + \sigma_{\rm SM}^2} = 2.71$$
.

$$\Delta_N = \begin{cases} 0 & \text{expected bound} \\ N_{\text{obs}} - N_{\text{SM}} & \text{observed bound} \end{cases}$$

Limits on
$$\Lambda \equiv \frac{M}{\sqrt{g_{\chi}g_1}}$$
:

$$\chi^2 \equiv \frac{[\Delta_N - N_{\rm DM}(m_{\chi}, \Lambda)]^2}{N_{\rm DM}(m_{\chi}, \Lambda) + N_{\rm SM} + \sigma_{\rm SM}^2} = 2.71.$$

$$\Delta_N = \begin{cases} 0 & \text{expected bound} \\ N_{\text{obs}} - N_{\text{SM}} & \text{observed bound} \end{cases}$$

Harder is better.

in the future:

populate the tail

populate the tail

and keep cutting harder

Other Operators:

Other Operators:

Other Operators:

The limit is flat up to ~200 GeV. Goes all the way to zero.

The limit is flat up to ~200 GeV. Goes all the way to zero.

Limits on
$$\Lambda \equiv \frac{M}{\sqrt{g_{\chi}g_1}}$$
:

- * The limits are fairly flat in mass (upto ~200 GeV).
- * The limits are fairly independent of the operator structure. Strong SD constraints.
- * These limits apply to iDM Tevatron doesn't care about 100 keV splittings.
- * For DD limits:

$$\mathcal{O}_2 = \frac{i g_{\chi} g_q}{q^2 - M^2} (\bar{q} \gamma_{\mu} q) (\bar{\chi} \gamma^{\mu} \chi) \longrightarrow \sigma_2^{Nq} = \frac{\mu^2}{\pi \Lambda^4} f_{Nq}^2,$$

with
$$f_u^p = f_d^n = 2$$
 $f_d^p = f_u^n = 1$. Same can be done for all operators.

SI Limit

 $\sigma_1^{Nq} = \frac{\mu^2}{\pi \Lambda^4} B_{Nq}^2,$ $\sigma_2^{Nq} = \frac{\mu^2}{\pi \Lambda^4} f_{Nq}^2,$

ATLAS 7TeV, 1fb⁻¹ VeryHighPt

ATLAS 7TeV, 1ft

SI Limit

 $\sigma_1^{Nq} = \frac{\mu^2}{\pi \Lambda^4} B_{Nq}^2,$ $\sigma_2^{Nq} = \frac{\mu^2}{\pi \Lambda^4} f_{Nq}^2,$

ATLAS 7TeV, 1fb⁻¹ VeryHighPt

ATLAS 7TeV, 1ft

SD Limit

ATLAS 7TeV, 1fb⁻¹ VeryHighPt

Best spin dependent limit.

Annihilation

* A minimal light thermal relic is ruled out:

Annihilation into $\overline{q}q$ Cross section $\langle \sigma v_{\rm rel} \rangle$ for $\overline{\chi} \chi \to \overline{q} q \; [{\rm cm}^3/{\rm s}]$ 10^{-20} 90% C.L. Solid: Observed 10^{-22} Dashed: Expected 10^{-23} 10^{-24} 10^{-25} 10^{-26} Thermal relic 10^{-27} 10^{-28} 10^{-29} $\langle v_{\rm rel}^2 \rangle = 0.24 \text{ (freeze-out)}$ 10^{-31} 10^{1} 10^{2} 10^3 10^{0} WIMP mass m_{χ} [GeV]

CDF Analysis

Light Mediators

- * Lets fix $\sigma_{\mathrm{DD}} \sim g_{\chi}^2 \, g_q^2 \, \frac{\mu^2}{M^4}$ and lower M.
- * Then $\sigma_{1j} \sim \alpha_s g_\chi^2 g_q^2 \frac{1}{p_T^2}$

drops as M^4 . Collider losses quickly

* For intermediate masses the limits is enhanced b/c of on-shell production, (depends on the width).

LEP mono-photon

LEP

- * Directly constrain DM coupling to electrons.
- * **But**, in many models quark and lepton coupling are related (consider 2 benchmarks).
- * LEP is a clean environment. Ability to measure missing mass.

* Places non-trivial limits also on indirect searches in lepton channels (e.g. the Hooperon).

Operators

* Same story w/ leptons (assume universality)

$$\mathcal{O}_{V} = \frac{(\bar{\chi}\gamma_{\mu}\chi)(\bar{\ell}\gamma^{\mu}\ell)}{\Lambda^{2}}, \qquad (\text{vector, } s\text{-channel})$$

$$\mathcal{O}_{S} = \frac{(\bar{\chi}\chi)(\bar{\ell}\ell)}{\Lambda^{2}}, \qquad (\text{scalar, } s\text{-channel})$$

$$\mathcal{O}_{A} = \frac{(\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell)}{\Lambda^{2}}, \qquad (\text{axial vector, } s\text{-channel})$$

$$\mathcal{O}_{t} = \frac{(\bar{\chi}\ell)(\bar{\ell}\chi)}{\Lambda^{2}}, \qquad (\text{scalar, } t\text{-channel})$$

Mono-photon

Use spectrum shape to reject background peak.

Model Dependence

- * We limit lepton couplings.
- * But how does DM couple to quarks?
- * Consider 2 extreme cases:
 - Couplings to quarks are same as leptons.
 - Couplings to quarks are zero.
- * Any other case can be derived from these two.

DD Limits

Equal couplings to all SM fermions

DD Limits

Leptophilic DM

* Consider zero couplings to quarks.

Direct detection

pays a big price.

Collider limits are strong.

Many more..

Light mediators:

Indirect detection:

Equal coupling to all charged leptons

Indirect Detection

Tension with the "Hooperon". Light thermal relic ruled out.

Mono-something!

- * For specific models, we can probe the identity of the mediator with other mono-somthings.
- * Mono-top signals can probe DM that is coupling via MFV operators (kamenik and Zupan).
- * In many models DM couples via the **Higgs**.

 Mono-Z (and VBF) may be sensitive to this.

Invisible Higgs searches can be interpreted as "direct detection" experiments!

A Characteristic Higgs Channel can confirm Higgs mediation!

Higgs Mediator

Direct detection is parametrically smaller!

Fox,RH, Kopp and Tsai

Games: Higgs searches & DM

- * Assume the Higgs hint is real w/ SM production.
- * The fact that is was seen in diphoton with the rate that is has, places limits on competing modes, e.g. Higgs to invisible.
- * Places upper limit on higgs mediated direct detection.
- * Assume a Higgs mass that is already excluded for SM.
- * Assume the reason it was excluded is an invisible branching fraction.
- * This places a lower limit on the invisible BR.

 Places a **lower** limit on higgs mediated direct detection.

To Conclude:

Colliders are placing competitive and complementary bounds to direct and to indirect detection:

- * The **Tevatron** is the world record holder for light dark matter and for spin dependent.
- * Dedicated CDF **mono-jet** is out. CMS, and ATLAS studies are underway.
- **LEP** mono-photons provide strong constraints.
- * There is a nice interplay b/w visible and invisible Higgs searches and DM searches for **Higgs-coupled DM**.

Happy Birthday Graham.

Current Higgs limits vs DM

- * Assume a Higgs mass that was already excluded for SM.
- * Assume the reason it was excluded is an invisible branching fraction.
- * This places a lower limit on the invisible BR.
- Places a lower limit on higgs mediated direct detection.

Current Higgs limits vs DM

CMS Higgs combined lower bound

Also, if a light SM Higgs is discovered, an upper limit on DD can be extracted.

CDF: jet + MET (Ifb-1)

counting experiment:

$$E_T > 80 \, \text{GeV}$$
 $p_T(j1) > 80 \, \text{GeV}$
 $p_T(j2) < 30 \, \text{GeV}$
 $p_T(j3) < 20 \, \text{GeV}$

Background	Number of Events
Z -> nu nu	3203 +/- 137
W -> tau nu	2010 +/- 69
W -> mu nu	1570 +/- 54
W -> e nu	824 +/- 28
Z->11	87 +/- 3
QCD	708 +/- 146
Gamma plus Jet	209 +/- 41
Non-Collision	52 +/- 52
Total Predicted	8663 +/- 332
Data Observed	8449

Observed: 8449 events

* DM experiments and colliders are often said to be related in a specific framework (SUSY).

"XENON100 is starting to probe the MSSM's pseudopod, LHC killed the Membrane, but the ectoplasm is still safe." [nature 67, 143 (2011)]

* DM experiments and colliders are often said to be related in a specific framework (SUSY).

"XENON100 is starting to probe the MSSM's pseudopod, LHC killed the Membrane, but the ectoplasm is still safe." [nature 67, 143 (2011)]