PSI Dark Matter Homework #2

Due: Apr. 5, 2013

- 1. Dark matter freeze out, from start to finish.
 - a) Starting from the interactions

$$-\mathcal{L} \supset y_{\gamma}\bar{\chi}\chi\,\phi + y_{f}\bar{f}f\,\phi\tag{1}$$

compute the leading contribution to $\langle \sigma v \rangle$ for $\chi \bar{\chi} \to f \bar{f}$ using the non-relativistic prescription described in notes-2. You may treat f as massless but keep the masses of ϕ and χ . You should also account for the fact that ϕ is unstable by including its decay width Γ_{ϕ} in the propagator: $i/(q^2 - m_{\phi}^2 + i m_{\phi} \Gamma_{\phi})$.

- b) Compute x_f and $\Omega_{\chi}h^2$ using the approximate expressions in notes-2.
- c) Plot your results as a function of the χ mass over the range 10 GeV $< m_{\chi} < 1000$ GeV for $y_{\chi} = y_f = 0.2$ and $m_{\phi} = 300$ GeV. Take the width of ϕ to be $\Gamma_{\phi} = m_{\phi}/50$.

You should now be equipped to compute the DM relic density of your favourite theory!

- 2. Direct detection scattering.
 - a) Consider a theory of a dark matter particle χ interacting with a visible fermion f through the interaction of Eq. (1) give above. Compute the amplitude and the summed and squared matrix element for the elastic-scattering process $\chi(p_1) + f(p_2) \rightarrow \chi(p_3) + f(p_4)$ mediated by this interaction.
 - b) Work out the kinematics for this process in the non-relativistic limit where χ comes in along the z axis with velocity $v \ll 1$, and strikes the fermion f at rest. Treat the fermion and χ as both being very massive $(m_{\chi}v \ll m_{\chi}, m_f, m_{\phi})$ and compute the momentum and the energy of the outgoing fermion in terms of the masses, v, and its scattering angle θ relative to the z axis.

Hint: non-relativistic $\Rightarrow E = m + p^2/2m, p = mv$.

- c) Evaluate the leading non-zero term in the summed and squared matrix element found in a) in an expansion in $v \ll 1$.

 Hint: it should be independent of v.
- d) Compute the differential scattering cross section, $d\sigma/dq^2$, where $q=|\vec{p}_4|$ is the momentum transferred to the fermion f in the reaction. For this, you may assume that $m_{\phi}^2 \gg (p_1 p_3)^2$ and use this fact to simplify the intermediate ϕ propagator factor.

Hint: recall that $\delta(f(x)) = \delta(x - x_0)/|f'(x_0)|$, where $f(x_0) = 0$.

3. AA operators.

Consider the interaction of DM with a fundamental s=1/2 fermion N via the interaction $a_{\chi N} (\chi \gamma^{\mu} \gamma^5 \chi) (\bar{N} \gamma_{\mu} \gamma^5 N)$.

- a) Compute the amplitude for $\chi(p_1) + N(p_2) \to \chi(p_3) + N(p_4)$ elastic scattering.
- b) Find the summed and squared matrix element for this process. You should be able to write it in the form $(\#)\chi_{\mu\nu}N^{\mu\nu}$, where $\chi_{\mu\nu}$ depends only on the DM momenta p_1 and p_3 and $N^{\mu\nu}$ depends only on the N momenta p_2 and p_4
- c) Evaluate $\chi^{\mu\nu}$ in the lab frame with N at rest and χ impinging upon it with three-momentum $p\hat{z} \ll m_{\chi}$, m_{N} . Next, evaluate $\chi^{\mu\nu}$ in the extreme non-relativistic limit of $p \to 0$.
- d) Compute the summed and squared matrix element in this extreme non-relativistic limit and compare to what you found in part 2.c). For this comparison, take $a_{\chi N} = y_{\chi} y_f/m_{\phi}^2$. What is the relative factor between the two squared matrix elements?