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In formulating quantum theories based on classical field theories, we have used the so-
called canonical quantization procedure, where we elevated the classical Poisson brackets
to (anti-)commutators between operators on a Hilbert space. It turns out there exists a
second, equivalent way to formulate quantum theories called the path integral method. In
some cases, and for theories with gauge invariance in particular, path integrals are much
more convenient than canonical quantization. Understanding the path integral method also
provides new insights on what we have already done.

You may or may not have encountered path integrals in your previous quantum mechanics
courses. If not, don’t worry since we will present everything you need to know here. Also,
don’t worry too much about mathematical exactitude. We don’t really know how to define
path integrals in a fully rigourous way. Nevertheless, they are extremely useful and they
give a very nice intuitive picture of quantum mechanics. My favourite treatment of path
integrals is Appendix A of Ref. [1], and much of these notes follows this text.1

1 Path Integrals for Scalar Fields

Let’s begin with the easiest case, namely the scalar field φ(x). We will begin by defining
path integrals as general mathematical objects. Next, we will show how they can be used to
formulate a quantum theory of scalar fields.

1.1 Introduction to Path Integrals

Recall from notes-02 that we defined the functional derivative with respect to a scalar field
φ(x) according to

δf(φ(x))

δφ(x′)
=
∂f

∂φ
δ(4)(x− x′) . (1)

This is just a continuous generalization of ∂µf(x) = δ ν
µ (∂f/∂xν). Functional (or path)

integrals will turn out to be an analogous generalization of regular integrals.

Let us first define the functional integral of the field φ(t, ~x) at the fixed time ti. For this,
we divide space into a lattice of points {~xj} labelled by j = 1, . . .M . The functional integral
at time ti is then defined to be

∫

[D ′φi] ∼ lim
M→∞

M
∏

j=1

[
∫ ∞

−∞

dφ(ti, ~xj)

]

, (2)

1You don’t need to know any string theory to understand the appendix.
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where the squiggle means equality up to an overall factor. The functional integral is therefore
just the product of integrals over the field values at each point in space. As you can imagine,
taking the continuum limit M → ∞ is highly non-trivial, and not even necessarily well-
defined.

To define the full path integral, let us take the time interval [t′, t′′] and subdivide it into
(N+1) pieces. Take t′ = t0 and t′′ = tN+1, with ti as the i-th intermediate time slice. The
full path integral with fixed endpoints φ(t′, ~x) = φ′(~x) and φ(t′′, ~x) = φ′′(~x) is then

∫

[Dφ]φ
′′

φ′ ∼ lim
N→∞

N
∏

i=1

∫

[D ′φi] . (3)

Note that the endpoints are fixed, and do not get integrated over. In many cases we will
take t′ → −∞, t′′ → ∞, and force φ′, φ′′ → 0. We will write the resulting path integral in
this case as simply

∫

[Dφ]. It is equivalent to the more symmetric expression
∫

[Dφ] ∼
∏

x

[
∫ ∞

−∞

dφ(t, ~x)

]

. (4)

You should think of this as a sum over all possible spacetime configurations of the field φ.
The product over points in spacetime x = (t, ~x) can also be viewed as the product over a
lattice of points xi = (ti, ~xi) in the limit that the lattice spacing is taken to zero.

The bad new about path integrals is that this definition is rather less than precise.
However, the good news is that we only ever do a small number of different types of integrals.
The first, and easiest, is

∫

[Dφ] δ[φ− φ′]S[φ] = S[φ′] , (5)

where S[φ] is any functional of the fields and φ′ is a specific function (i.e. a specific field
configuration). The delta functional can also be written as a path integral, just like we have
for the usual delta function. To derive it, note first that the delta functional is the product
of delta functions at each point in spacetime, since both are zero unless the argument is the
zero function:

δ[φ] ∼
∏

x

δ(φx) , (6)

where φx = φ(x) is the value of the field at point x (and not a function of x). We also have

δ(φx) =

∫

dωx
2π

eiωxφx . (7)

It follows that

δ[φ] ∼
∏

x

(
∫

dωx e
iωxφx

)

(8)

∼

(

∏

x

∫

dωx

)

exp(i
∑

x

ωxφx) (9)

∼

∫

[Dω] exp

[

i

∫

d4xω(x)φ(x)

]

. (10)
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The second kind of integral we will encounter is the Gaussian. Recall that

∫ ∞

−∞

dx e−αx
2

=

√

π

α
. (11)

The path integral Gaussian is just a multi-dimensional generalization of this. To compute it,
recall that the set of all functions on spacetime is an infinite-dimensional vector space with
an inner product given by

f · g =

∫

d4x f(x)g(x) . (12)

An element of the space is just a function f , and f(x) is the x-th component of the function.2

The typical integrand of a functional Gaussian integral is

exp [−φ · (∆φ)] = exp

[

−

∫

d4x φ(x)∆φ(x)

]

, (13)

where ∆ is a differential operator with only even powers of ∂2. Since we assume that φ
vanishes at the boundary, this operator is Hermitian with respect to the inner product. It
follows that we can expand any function φ in terms of a set of basis functions {fA} such that

∆ fA = λAfA , (14)

and
∫

d4x fAfB = δAB . (15)

Expanding φ in terms of these basis functions gives

φ(x) =
∑

A

φA fA(x) , (16)

where φA is the A-th expansion coefficient. The Gaussian integrand then becomes

exp [−φ · (∆φ)] = exp

[

−
∑

A

λAφ
2
A

]

=
∏

A

e−λAφ
2

A . (17)

Since any field configuration can be specified completely by the expansion coefficients φA,
integrating over them is equivalent to doing the path integral. Thus, we have

∫

[Dφ] ∼
∏

A

[
∫ ∞

−∞

dφA

]

. (18)

2You’ve seen this in QM: if |ψ〉 is a state, ψ(x) = 〈x|ψ〉 is the x-th component in the position basis.

3



Putting these pieces together, we see that

∫

[Dφ] e−φ·(∆φ) ∼
∏

A

[
∫

dφA e
−λAφ

2

A

]

(19)

∼
∏

A

(

π

λA

)1/2

(20)

∼ (det∆)−1/2 . (21)

Note that defining the determinant of an operator to be the product of its eigenvalues
coincides with what we would find for a finite-dimensional diagonalizable matrix.

1.2 Path Integral Quantization of the Free Scalar

In notes-02, we discussed eigenstates of the Schrödinger-picture field operator at the fixed
reference time t = 0, φ̂(~x) = φ̂(0, ~x):3

φ̂(~x)|φ′〉 = φ′(~x)|φ′〉 . (22)

On the left-hand side we have the field operator (denoted by the hat), while on the right-
hand side we have the specific classical field function that is its eigenvalue on the state |phi′〉.
In the Heisenberg picture, we have

φ̂(x) = φ̂(t, ~x) = eiHtφ̂(0, ~x)e−iHt . (23)

In this picture, we can also form comoving eigenstates defined by

|φ′(t)〉 = eiHt|φ′〉 . (24)

These obviously satisfy

φ̂(t, ~x)|φ′(t)〉 = φ′(~x)|φ′(t)〉 . (25)

Comoving eigenstates evolve oppositely to physical states in the Schrödinger picture.

The key result of path integral quantization is [1]4

〈φ′′(t′′)|T{φ̂(x1) . . . φ̂(xn)}|φ
′(t′)〉 =

∫

[Dφ]φ
′′

φ′ exp

[

i

∫ t′′

t′
dt L(φ, φ̇)

]

φ(x1) . . . φ(xn) , (26)

where t′ < t1, . . . , tn < t′′. This is a very deep relation. On the left side is a quantum
mechanical matrix element of an operator. On the right, we just have a complicated sum
over classical field configurations weighted by the action!

3In these notes, we will use a hat to denote a quantum operator.
4See Refs. [1, 2, 3, 4] for proofs.
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For scattering calculations, we only need to find the expectation values of operators in
the vacuum state |Ω〉 of the theory. Similarly to what we did in notes-03, we can project
it out by taking the limit of t→ ±∞ in a slightly imaginary direction. For example,

lim
t→−∞(1−iǫ)

|φ′(t)〉 = lim
t→−∞(1−iǫ)

eiHt
′

(

∑

λ

|λ〉〈λ|

)

|φ′〉 (27)

= lim
t→−∞(1−iǫ)

[

|Ω〉〈Ω|φ′〉+
∑

λ6=Ω

eiEλt|λ〉〈λ|φ′〉

]

(28)

= (〈Ω|φ′〉) |Ω〉 (29)

Instead of tilting t, we can instead add a small perturbation to the energy to make it slightly
imaginary. A convenient way to do this in a field theory is to make the mass slightly
imaginary, since the corresponding φ2 operator is positive definite,

−L ⊃ m2φ2 → (m2 − iǫ)φ2 , (30)

with ǫ > 0. This induces

H (m2 − iǫ) → H (m2) +
∂H

∂m2
(−iǫ) = H (m2)− iǫ′ , (31)

with ǫ′ > 0 since ∂H /∂m2 > 0 in any sensible theory. This gives

Eλ → Eλ − iǫ′ , (32)

which projects out the vacuum when inserted in Eq. (28).

After applying this projection, we obtain a master formula for path integrals:

〈Ω|T{φ̂(x1) . . . φ̂(xn)}|Ω〉 =

∫

[Dφ] eiS
′[φ] φ(x1) . . . φ(xn)

/
∫

[Dφ] eiS
′[φ] , (33)

where the S ′ is the action with a slightly imaginary mass, and we have normalized the
right-hand side so that 〈1〉 = 1. This formula should remind you of a statistical mechanical
partition function, with eiS

′

instead of e−H/T as the exponential weight.

To study operator expectation values, let us define the generating functional Z[J ] by

Z[J ] =

∫

[Dφ] exp(iS[φ] + iJ ·φ) =

∫

[Dφ] exp

[

i

∫

d4x (L + Jφ)

]

, (34)

where J(x) is an unspecified function and J · φ =
∫

d4x J(x)φ(x) as before. The function
J(x) is often called the source. Suppose we take the functional integral of Z[J ] with respect
to J(x). This has the effect of adding a power of iφ(x) to the integrand:

δZ[J ]

δJ(x)
=

∫

[Dφ]
δ

δJ(x)
ei(S[φ]+J ·φ) (35)

=

∫

[Dφ]

[
∫

d4y iφ(y) δ(4)(y − x)

]

ei(S[φ]+J ·φ) (36)

=

∫

[Dφ] iφ(x) ei(S[φ]+J ·φ) (37)
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Taking more derivatives would add more powers of φ to the integrand. We can use this to
rewrite our master formula, Eq. (33), as

〈Ω|T{φ̂(x1) . . . φ̂(xn)}|Ω〉 = (−i)n
δ

δJ(x1)
. . .

δ

δJ(xn)
Z[J ]

∣

∣

∣

∣

J=0

/

Z[0] . (38)

Setting J → 0 after taking the derivatives gets rid of the J · φ in the exponential, and
normalizing by 1/Z[0] ensures that 〈1〉 = 1.

So far, all our results are completely general and apply to both free and interacting scalar
theories. Let us now apply them specifically to the free scalar theory,

L =
1

2
(∂φ)2 −

1

2
(m2 − iǫ)φ2 . (39)

after integrating by parts, this gives

S[φ] =
1

2

∫

d4x φ(−∂2 −m2 + iǫ)φ (40)

:=
1

2
φ·(∆φ) , (41)

with ∆ = (−∂2−m2+ iǫ). When inserted into the path integral, this will just be a Gaussian.

We can evaluate the generating functional for the free theory by completing the square
and computing the Gaussian path integral. For this, note that

∆ DF (x) = (−∂2 −m2 + iǫ)

∫

d4p

(2π)4
i

p2 −m2 + iǫ
e−ip·x (42)

= iδ(4)(x) . (43)

We can therefore think of −iDF = ∆−1. With this result in hand, we can complete the
square by making the change of variable

φ(x) = φ′(x)−

∫

d4y (−i)DF (x− y)J(y) := φ′(x)− (∆−1J)(x) . (44)

In the exponential of Z[J ], this gives

S[φ] + J ·φ =
1

2
(φ′ −∆−1J) · [∆(φ′ −∆−1J)] + J ·(φ′ −∆−1J) (45)

=
1

2
φ′ ·(∆φ′)−

1

2
J · (∆−1J) (46)

=
1

2

∫

d4xφ′∆φ′ +
i

2

∫

d4x

∫

d4y J(x)DF (x− y)J(y) . (47)

In going from the first to the second line we have implicitly integrated by parts to move the
∆ operator around. The integrand in terms of φ′ is now a Gaussian. Since the change of
variables was just a shift by a constant, the path integral measure is also unchanged,

[Dφ] = [Dφ′] . (48)
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It follows that the free-theory generating functional is equal to

Z[J ] ∼ (det∆)−1/2 exp

[

−
1

2

∫

d4x

∫

d4y J(x)DF (x− y)J(y)

]

. (49)

Note that the iǫ factor inserted to project out the ground state leads to the Feynman
propagator in this expression. It also ensures the convergence of the Gaussian integral.

We can now use Eq. (38) to compute n-point functions in the free theory. The 2-point
functions comes out to be

(−i)2
δ2

δJ(x) δJ(y)

(

e−
1

2
J ·DF ·J

)

∣

∣

∣

∣

J=0

= (−1)2DF (x− y) , (50)

which is precisely what we found previously. We also see that the propagator is just the
inverse of the quadratic operator in the Lagrangian. Repeating with more derivatives, we
reproduce all the n-point functions of the theory (and Wick’s theorem) in a very trivial way.
In this case, the contraction of two fields corresponds to the corresponding derivatives hitting
the same term in the expansion of the exponential.

2 Path Integrals for Fermions

We can also quantize fermion fields using path integrals. For this, we need to define
regular derivatives and integrals of Grassmann numbers. From here, it is straightforward to
generalize to fermionic path integrals, and then to quantization.

2.1 Grassman Integrals, Regular and Path

Suppose we have a single Grassmann number η. Since η2 = 0, the most general real function
of η is

f(η) = a+ bη , (51)

for some real coefficients a and b. We define the derivative by

d

dη
1 = 0,

d

dη
η = 1 , (52)

so that

d

dη
f(η) = b . (53)

For integrals, we define
∫

dη 1 = 0,

∫

dη η = 1 . (54)
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It is best to think of
∫

dη as an operator on functions of η rather than an integral in the
usual sense. This definition implies that

∫

dη
df(η)

dη
= 0 . (55)

When there are multiple Grassmann numbers, we treat the integral and the derivative as
operators acting from the left, and put everything together by anticommuting. For example,
given η and χ we have

d

dη
χ = 0,

d

dη
(χη) = −

d

dη
(ηχ) = −χ . (56)

Integrals work in the same way.

Having warmed up with regular derivatives and integrals, let’s generalize them to their
functional counterparts. We have

δΨa(x)

δΨb(y)
= δ b

a δ
(4)(x− y) . (57)

For the functional integral, we take

∫

[DΨ] ∼
∏

x

[
∫

dΨ1(x)

∫

dΨ2(x)

∫

dΨ3(x)

∫

dΨ4(x)

]

. (58)

In other words, do the Grassmann integral over each component of Ψ at every point in
spacetime and multiply together all the results. Note that Ψa(x) should be treated as
independent Grassmann variables in that Ψa(x)Ψb(x

′) is non-zero unless a = b and x = x′.

Evaluating fermionic functional integrals is even easier than for bosons. The case of most
interest to us will the be the Gaussian,

∫

[DΨDΨ̄] exp

[

−

∫

d4x Ψ̄∆Ψ

]

, (59)

where ∆ is a Hermitian differential operator. As before, let us expand Ψ and Ψ̄ in orthonor-
mal eigenfunctions of the operator ∆:

Ψ(x) =
∑

A

ψAgA(x), Ψ̄(x) =
∑

B

ψ̄BhB(x) , (60)

where gA and hA are bosonic functions and ψA and ψ̄B are Grassmannian expansion coeffi-
cients. For the eigenfunctions, we have

∆ gA = λAgA ∆hB = λBhB , (61)

as well as
∫

d4xhB(x)gA(x) = δAB . (62)
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Putting this into the integrand, we find

exp
[

Ψ̄ · (∆Ψ)
]

= exp

[

−
∑

A

ψ̄AλAψA

]

=
∏

A

e−ψ̄AλAψA . (63)

The path integral measure becomes
∫

[DΨDΨ̄] ∼
∏

A

[
∫

dψA

∫

dψ̄A

]

. (64)

The Gaussian integral is therefore equal to
∫

[DΨDΨ̄] e−Ψ̄·(∆Ψ) ∼
∏

A

[
∫

dψA

∫

dψ̄A e
−ψ̄AλAψA

]

(65)

∼
∏

A

[
∫

dψA

∫

dψ̄A (1− λAψ̄AψA)

]

(66)

∼
∏

A

(−λA) (67)

∼ det(∆) . (68)

Note that the determinant has a positive power rather than a negative one. This is charac-
teristic of fermions. The factor of +1 relative to 1/2 comes from the fact that two different
fields are now involved.

2.2 Path Integral Quantization

With these tools in hand, we can now turn to physics. The master formula for a Dirac
fermion is

〈Ω|T{Ψ̂a1(x1) . . .
ˆ̄Ψbn(xn)}|Ω〉 =

∫

[DΨDΨ̄] eiS
′

Ψa1(x1) . . . Ψ̄
bn(xn)

/
∫

[DΨDΨ̄] eiS
′

, (69)

where S ′ = S[Ψ, Ψ̄] + iǫΨ̄Ψ. When there are multiple types of fields, we should integrate
over each one of them in the path integral.

To compute n-point functions, it is again convenient to define a generating functional,
this time with a source for each independent field. For a theory of Dirac fermions,

Z[η, η̄] =

∫

[DΨDΨ̄] exp
[

iS[Ψ, Ψ̄] + iη̄ ·Ψ+ iΨ̄ · η
]

. (70)

We now have

δZ

δη̄a(x)
=

∫

[DΨDΨ̄] (iΨa(x)) e
iS[Ψ,Ψ̄]+iη̄·Ψ+iΨ̄·η , (71)

δZ

δηb(x)
=

∫

[DΨDΨ̄] (−iΨ̄b(x)) eiS[Ψ,Ψ̄]+iη̄·Ψ+iΨ̄·η . (72)
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Note the extra minus sign from anticommuting the fermionic functional derivative. Taking
multiple derivatives and setting η = η̄ = 0, we get

〈Ω|T{Ψa1(x1) . . . Ψ̄
bn(xn)}|Ω〉 =

1

Z[0, 0]

(

−i
δ

δη̄a1(x1)

)

. . .

(

+i
δ

δηbn(xn)

)

Z[η, η̄]

∣

∣

∣

∣

η=η̄=0

(73)

Let’s now specialize to the free theory of a Dirac fermion, with action

S[Ψ, Ψ̄] =

∫

d4x Ψ̄(iγ · ∂ −m+ iǫ)Ψ := Ψ̄ · (∆Ψ) . (74)

As before, we can complete the square in the generating functional and do the resulting
Gaussian integral. The appropriate changes of variables in this case are

Ψ(x) = Ψ′(x)−

∫

d4y (−i)SF (x− y)η(y) (75)

Ψ̄(x) = Ψ̄′(x)−

∫

d4y (−i)η̄(y)SF (y − x) . (76)

Using the fact that

∆[SF (x)]
b
a = iδ b

a δ
(4)(x) , (77)

we obtain

Z[η, η̄] ∼ det(∆) exp

[

−

∫

d4x

∫

d4y η̄(x)SF (x− y)η(y)

]

. (78)

As for the scalar, it is not hard to check that this formula reproduces all the n-point functions
(and Wick’s theorem) of the free Dirac theory.

3 Quantizing the Photon

Path integrals turn out to be very convenient for quantizing gauge theories. We will show
how this works for the case of the free photon field.

3.1 Two Puzzles

The goal is to apply our path integral formalism to the free photon, with Lagrangian

L = −
1

4
FµνF

µν = −
1

2
Aµ(−ηµν∂2 + ∂µ∂ν)A

ν , (79)

where we have integrated by parts to get the second equality. Given this Lagrangian, we can
construct an action and formulate a master formula for n-point functions in analogy with
Eq. (33). The direct generalization is

〈Ω|T{Âµ1(x1) . . . Â
µn(xn)}|Ω〉

?
=

∫

[DAµ]Aµ1(x1) . . . A
µn(xn)e

iS′[A]

/
∫

[DAµ] eiS
′[A] , (80)
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where
∫

[DAµ] =

∫

[DA0] . . .

∫

[DA3] . (81)

It turns out that this direct generalization is not quite correct.

There are two immediate problems with Eq. (80). The first is that it involves an
integration over many physically equivalent field configurations. In fact, given a configuration
Aµ(x), there are infinitely many other configurations that give the same physics, namely

A
′

µ(x) = Aµ(x) +
1

e
∂µα(x) , (82)

for any function α(x). The integration in Eq. (80) therefore involves a huge (infinite!)
overcounting.

The second problem with the attempt of Eq. (80) has to do with the propagator. Recall
that for both the scalar and the fermion, we wrote the free theory as φ(∗) · (∆φ) for some
Hermitian operator ∆. In the present case, we can do the same but with

∆ → ∆µν = ηµν∂
2 − ∂µ∂ν . (83)

If we were to follow our previous procedure and add a source and complete the square, we
would obtain an operator contaning the inverse of ∆µν . Unfortunately, this inverse is not
well-defined because ∆µν has many zero eigenvalues. For example,

∆µν(∂
να) = 0 , (84)

for any function α. Connecting with the first problem, we see that these zero eigenvalues
correspond to field configurations that are gauge-equivalent to the zero configuration.

3.2 Gauge Fixing (Faddeev-Popov)

Both problems with the direct generalization of the path integral formula for scalars (and
fermions) can be solved by taking into account the physics of gauge invariance. The idea
will be to find a way to factor out the gauge redundancy and integrate over only physically
distinct field configurations. It will turn out that this procedure also produces an invertible
propagator factor.

As a first step, let us assume we can find a gauge fixing condition on the field Aµ that
removes the gauge redundancy [5],

F (Aµ) = 0 , (85)

where the condition is to be applied at all spacetime points x. We will use the specific choice
F (Aµ) = ∂µA

µ here, but the procedure presented here can be applied to other conditions.
In general, a field configuration Ãµ(x) will not satisfy the gauge fixing condition. However,
in this Lorentz-gauge case there always exists a gauge-equivalent configuration Aµ for which
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the condition is satisfied, Aµ = Ãµ+∂µ/e. The gauge function α can be obtained by solving
the equation

∂2α = e(∂µA
µ) . (86)

In this way, the gauge fixing condition fixes the gauge function α(x), up to transformations
with ∂2α = 0. A good gauge fixing condition is one that always has a solution, with that
solution completely fixing the gauge.

Given the field configuration Aµ, let us denote the gauge-transformed version by

Aµα(x) = Aµ(x) +
1

e
∂µα(x) (87)

Next, let us also define the functional ∆FP [A] by

1 = ∆FP [A
µ]

∫

[Dα] δ[F (Aµα)] . (88)

As long as the gauge condition has a solution, the delta functional will give a non-zero result
for any configuration Aµ. The functional ∆FP [A] is then just the inverse of the number left
over. A key property of ∆FP [A] is that it is gauge invariant, ∆FP [A

µ
α′ ] = ∆FP [A

µ] for any
gauge transformation function α′(x). To see this, just plug the transformed result into the
transformation and use the fact that successive transformations by α′ and α are equivalent
to a single transformation by α′′ = (α + α′). Explicitly,

∆−1
FP [A

µ
α′ ] =

∫

[Dα] δ[F (Aµα′+α)] (89)

=

∫

[Dα′′] δ[F (Aµα′′)] (90)

= ∆−1
FP [A

µ] . (91)

In the second line we have used [Dα′′] = [Dα], since the two differ only by a shift by a fixed
function α′(x).

Let’s take this result and plug it into the näıve path integral expression we attempted to
use in Eq. (80),

∫

[DAµ]O(Aµ) eiS
′[Aµ] =

∫

[DAµ]

(

∆FP [A
µ]

∫

[Dα] δ[F (Aµα)]

)

O(Aµ) eiS[A
µ] , (92)

where O(Aµ) is a gauge-invariant time-ordered operator built out of Aµ fields, and we have
just inserted unity in the form of Eq. (88). We can reorganize this expression by interchanging
the orders of the functional integrals, and using gauge invariance in the form ∆FP (A

µ
α) =

∆FP (A
µ), S[Aµα] = S[Aµ], and O(Aµα) = O(Aµ). This gives
∫

[DAµ]O(Aµ) eiS
′[Aµ] =

∫

[Dα]

∫

[DAµα] ∆FP [A
µ
α] δ[F (A

µ
α)]O(Aµα) e

iS[Aµ
α] (93)

=

(
∫

[Dα]

)
∫

[DAµ] ∆FP [A
µ] δ[F (Aµ)]O(Aµ) eiS[A

µ] , (94)
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where in the last line we have used [DAµα] = [DAµ], since the integration variables only differ
by a constant shift.

The result of Eq. (94) suggests how to build a reasonable quantum theory of the photon.
In this expression, we have reorganized the simple path integral over all gauge field config-
urations into an expression that is independent of gauge times a functional integral over all
gauge transformation parameters. This gauge factor is sometimes called the volume of the
gauge group, and is formally infinite. It is also precisely the factor corresponding to the
number of times we are overcounting physically equivalent field configurations. The sensible
thing to do, therefore, is cancel it off and reinterpret the remaining factor as the correct
expression for the time ordered, gauge-invariant operator matrix element:

〈Ω|T{O(Aµ)}|Ω〉 =

∫

[DAµ] ∆FP [A
µ] δ[F (Aµ)]O(Aµ) eiS[A

µ] (95)
/
∫

[DAµ] ∆FP [A
µ] δ[F (Aµ)] eiS[A

µ] . (96)

This expression looks just like Eq. (80), except that we now have an additional factor of
∆FP [A

µ]δ[F (Aµ)] in both the numerator and denominator.

To evaluate Eq. (95) for a given operator, we need to figure out how to handle ∆FP [A
µ],

defined by Eq. (88). This will require some more functional funny business. Before addressing
that, let us start of with a regular multi-dimensional integral. Recall that here, changing
integration variables generates a Jacobian factor. For example, consider (x1, x2) → (u1, u2),
and the integral

∫

d2x δ(2)(u− u0) =

∫

d2u

[

det

(

∂ui

∂xj

)]−1

δ(2)(u− u0) =

[

det

(

∂ui

∂xj

)]−1

u=u0

. (97)

The remaining determinant is the so-called Jacobian, and it is to be evaluated at points
where u = u0.

We would like to do the same type of change of variables for the functional integral
relation of Eq. (88). First, note that F (Aµα) should be set to zero at each point x, and
to keep track of this, we will write F (x,Aµα). The change of variables will therefore be
α(y) → F (x,Aµα). In direct analogy with the regular multi-dimensional integral, this change
of variables produces a Jacobian factor

∆−1
FP (A

µ) =

∫

[Dα] δ[F (x,Aµα)] =

∣

∣

∣

∣

det

[

δF (x,Aµα)

δα(y)

]
∣

∣

∣

∣

−1

F (Aα)=0

. (98)

This looks like a mess, but we can evaluate it for the specific case of ∂µA
µ
α(x) = 0. Using

gauge invariance, we can choose our representative Aµ such that it satisfies F (x,Aµ) = 0
with α(x) = 0. This implies that

∆FP (A
µ) =

∣

∣

∣

∣

det

[

δF (x,Aµα)

δα(y)

]
∣

∣

∣

∣

=

∣

∣

∣

∣

det

(

1

e
∂2x δ

(4)(x− y)

)
∣

∣

∣

∣

. (99)
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Note that this is independent of Aµ. We can rewrite this determinant in terms of a fermionic
functional integral,

∆FP ∼

∫

[Dc][D c̄] exp

[

i

e

∫

d4x c̄∂2c

]

. (100)

The fields c and c̄ are fermions called Faddeev-Popov ghosts. Since they don’t couple to
anything and don’t appear as physical external particles, we can ignore them for QED.
However, in more complicated gauge theories they couple to the gauge field and must be
included in calculations at loop level.

As a final trick, let us rewrite the δ[F (Aµ)] delta functionals in a nicer form. To do so, we
modify the gauge condition to F (Aµα)−ω(x) = 0 for some fixed function ω. All our previous
work goes through in exactly the same way, with the only change being the replacement
δ[F (Aµ)] → δ[F (Aµ)−ω]. Next, let us sum over many different functions ω(x) and multiply
by a weighting functional G[ω] of the form

G[ω] = exp

[

−i

2ξ

∫

d4xω2(x)

]

. (101)

At the end of the day, this gives (in the numerator of Eq. (95))
∫

[DAµ]

∫

[Dω] δ[F (Aµ)− ω]G[ω] ∆FP O(Aµ) eiS[A
µ] (102)

=

∫

[DAµ]

∫

[Dω]G[F (Aµ)]∆FP O(Aµ) eiS[A
µ] (103)

=

∫

[DAµ]

∫

[Dc][D c̄] O(Aµ) ei(S+Sgf+Sc) , (104)

where

Stot = S + Sgf + Sc =

∫

d4x

[

−
1

4
FµνF

µν −
1

2ξ
(∂µA

µ)2 +
1

e
c̄∂2c

]

. (105)

Note that we have used the delta functional to remove the integration over ω and replace it
everywhere by F (Aµ).

We have just done a lot of functional heavy lifting, but the final result is very simple.
The procedure of cancelling off the gauge redundancy of the functional integral amounts
to adding fermionic ghost fields and some new terms in the action. In summary, removing
the gauge redundancy of the functional integral can be reduced simply modifying the näıve
formula of Eq. (80) by:

1. Include Dirac fermion ghost fields c and c̄ with action Sc. The fields do not couple to
anything in QED and can be neglected. (This is not true in more complicated theories
like QCD!)

2. Add a gauge-fixing term -(∂µA
µ)2/2ξ to the action. This is the same form as the extra

term we added in Gupta-Bleuler quantization.

That’s it!
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3.3 Propagation

Our complicated gauge-fixing procedure has removed the overcounting of configurations in
the functional integral. Let us next address the second problem of a non-invertible photon
quadratic term. It turns out that gauge fixing solves this problem too by adding a new piece
to the action. After integrating by parts, we now have

Stot =

∫

d4x
1

2
Aµ
[

ηµν∂
2 − (1− 1/ξ)∂µ∂ν

]

Aν . (106)

This is invertible for any finite ξ. Introducing a source and completing the square as before,
we obtain

〈Ω|T{Aµ(x)Aν(x′)}|Ω〉 =

∫

d4k e−ik·(x−x
′) i

k2 + iǫ

[

−ηµν + (1− ξ)
kµkν

k2

]

. (107)

Again, this matches what we had in notes-10.

4 Interacting Theories

We have already used path integrals to reproduce all the operator expectation values of the
free scalar, fermion, and photon theories studied previously. In this section we show how to
use path integrals to compute operator expectation values in interacting theories.

To start, consider the interacting scalar theory given by

L =
1

2
(∂φ)2 −

1

2
m2φ2 −

λ

4!
φ4 (108)

= L0 −∆V (φ) . (109)

Let us also write the generating functional of the free theory as Z0[J ],

Z0[J ] :=

∫

[Dφ]ei(So+J ·φ) ∼ e−
1

2
J ·DF ·J , (110)

where S0 =
∫

d4xL0. This is a nice result, but what we really want is the full generating
functional Z[J ] so that we can compute n-point functions using Eq. (38).

In general, we do not know how to compute the full functional Z[J ] exactly. However, it
is possible to derive a simple relation between Z[J ] and Z0[J ] that lends itself to perturbation
theory. For this, note that

∫

d4x∆V

(

−i
δ

δφ(x)

)

Z0[J ] =

∫

[Dφ]

(
∫

d4x
λ

4!
φ4(x)

)

ei(S0+iJ ·φ) , (111)

where V
(

−i δ
δφ(x)

)

means to replace every appearance of φ(x) in ∆V with δ/δφ(x). Thus,

Z[J ] = exp

[

−i

∫

d4x∆V

(

−i
δ

δφ(x)

)]

Z0[J ] . (112)
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This together with Eq. (38) are the path integral form of the master formula from notes-03.
Computing n-point functions is now just a matter of taking lots of derivatives.

To illustrate this procedure in a more complicated example, let us compute 〈φ(x1)Ψa(x2)Ψ̄
b(c3)〉

in QED Lite. Introducing sources for the scalar and fermion fields as in the free theory, we
have

Z[J, η, η̄] = exp

[

−iy

∫

d4z

(

−i
δ

δJ(z)

)(

+i
δ

δηc(z)

)(

−i
δ

δη̄c(z)

)]

Z0[J, η, η̄] , (113)

where

Z0[J, η, η̄] = Z0[0, 0, 0] e
− 1

2
J ·DF ·J e−η̄·SF ·η . (114)

To get the 3-point function, we should differentiate with respect to the corresponding sources
at x1, x2, and x3. Thus,

〈φ(x1)Ψa(x2)Ψ̄
b(c3)〉 =

(

−i
δ

δJ1

)(

i
δ

δηa2

)(

−i
δ

δη̄b3

)

Z[J, η, η̄]|J=0=η=η̄

/

Z[0, 0, 0] . (115)

To evaluate this, we expand the exponential in Eq. (113). At leading order in the coupling
y, we have

〈φ(x1)Ψa(x2)Ψ̄
b(c3)〉 (116)

= (iy)
δ

δJ1

δ

δηa2

δ

δη̄b3

∫

d4z
δ

δJ(z)

δ

δηc(z)

δ

δη̄c(z)
e−

1

2
J ·DF ·J e−η̄·SF ·η |J=0=η=η̄ (117)

= (−iy)

∫

d4z DF (x1 − z) [SF (x2 − z)] ca [SF (z − x3)]
b
c + (disconnected) (118)

This matches what we found in notes-08.
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